top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Emerging Nanomaterials and Their Impact on Society in the 21st Century
Emerging Nanomaterials and Their Impact on Society in the 21st Century
Autore Singh N. B
Edizione [1st ed.]
Pubbl/distr/stampa Millersville : , : Materials Research Forum LLC, , 2023
Descrizione fisica 1 online resource (373 pages)
Collana Materials Research Foundations
Soggetto non controllato Science
ISBN 9781644902172
9781644902165
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Nanomaterials: Overview and Historical Perspectives -- 1. Introduction -- 2. Terms associated in nanotechnology -- 3. Historical development of nanotechnology -- 4. Modern era of nanotechnology -- 5. Types of nanomaterials -- 6. Applications of nanomaterials -- 7. Concluding remarks -- References -- 2 -- Nanomaterials in the Lubricant Industry -- 1. Introduction -- 2. Base oils and their classification -- 2.1 Liquid lubricants or lubricating oils -- 2.2 Mechanism of lubrication -- 2.3 Nanoparticles as lubricant additives -- 3. Types of nanoparticles as lubricant additives -- 3.1 Metal oxides -- 3.2 Metals -- 3.3 Metal sulphides -- 3.4 Carbon-based nanomaterials -- 3.5 Boron-based nanomaterials -- 3.6 Nanocomposites -- 4. Factors affecting the lubricating properties of nanoparticles as lubricants -- 4.1 Size of nanoparticle -- 4.2 Shape of nanoparticles -- 4.3 Surface functionalization -- 4.4 Concentration of nanoparticles -- 5. Application fields of nanolubricants -- 6. Roadblocks to full scale use of nanolubricants -- Conclusions -- References -- 3 -- Carbon Nanomaterials and Their Applications -- 1. Introduction -- 2. Properties of nano-carbons -- 3 Fullerenes -- 3.1 Types of fullerenes -- 3.2 Synthesis of fullerenes -- 3.2.1 The arc discharge technique -- 4. The carbon nanotubes (CNTs) -- 4.1 Types of carbon nanotubes (CNTS) -- 4.1.1 Single-walled carbon nanotubes (SWCNTS) -- 4.1.2 Multiple-walled carbon nanotubes (MW-CNTS) -- 5. Synthesis of carbon nanotubes (CNTs) -- 5.1 Arc discharge or plasma-based synthesis technique -- 5.2 Laser ablation technique -- 5.3 Plasma-enhanced chemical vapour deposition (PE-CVD) technique -- 5.4 Thermal synthesis technique -- 5.5 Chemical vapour deposition (CVD) Technique -- 6. Nano-diamonds -- 6.1 Synthesis of nanodiamonds.
7. Applications of carbon nanomaterials in water treatment -- 7.1 Fullerenes and water purification -- 7.2 Carbon nanotubes and water purification -- 7.3 Nanoporous activated carbon and water purification -- 7.4 Graphene and water purification -- 8. Carbon nanomaterials in diagnosis and therapy: clinical applications -- 8.1 Biomedical applications of nanodiamonds -- 8.2 Chemo-resistant cancers and nanodiamond drug delivery -- 8.3 Optimized magnetic resonance imaging using nanodiamonds -- 8.4 Carbon nanotubes with functionalized surfaces for improved drug delivery -- 8.5 Tissue engineering and regeneration using functionalized carbon nanotubes -- 8.6 Ex-vivo stem cell development using functionalized carbon nanotubes -- 8.7 Deployment of carbon nanotubes in photoacoustic imaging -- 8.8 Carbon nanofibers for electrochemical sensors and biosensors -- 9. Graphene and graphene oxide in bioanalytical sciences -- 10. Electrochemical sensors based on carbon nanoparticles -- 10.1 Carbon nanotube-based electrochemical sensors -- 10.2 Amperometric transducers made of carbon nanotubes -- 10.3 DNA sensors based on carbon nanotubes -- 10.4 Gas sensors using carbon nanotubes -- 11. Carbon nanoparticles and their applications in the plant system -- 11.1 Seed germination, seedling growth, plant development, and phytotoxicity effects of CNMs -- 11.2 Effects of fullerenes (C60) and fullerols (C60(OH)n) on plants -- 11.3 Effects of graphene on plants -- 11.4 Effects of carbon nanoparticles on plants -- 11.5 Effects of graphene oxide on plants -- 11.6 Effects of mesoporous carbon nanoparticles on plants -- 11.7 Effects of fluorescent carbon dots and carbon nanodots on plants -- Conclusion and future prospects -- References -- 4 -- Functionalized Carbon Nanomaterials: Fabrication, Properties, and Applications -- 1. Introduction -- 2. Historical background.
3. Fabrication of functionalized CNMs -- 3.1 Fabrication and functionalization of carbon nanotubes (CNTs) -- 3.2 Fabrication and Functionalization of Expanded grapite (EG) -- 3.3 Fabrication and functionalization of carbon dots (CDs) -- 3.4 Fabrication and functionalization of graphene and graphene oxide (GO) -- 4. Properties of functionalized CNMs -- 4.1 Carbon nanotubes (CNTs) -- 4.2 Expanded graphite (EG) -- 4.3 Carbon dots (CDs) -- 4.4 Graphene and graphene oxide (GO) -- 5. Applications of functionalized CNMs -- 5.1 Carbon nanotubes (CNTs) -- 5.2 Expanded graphite (EG) -- 5.3 Carbon dots (CDs) -- 5.4 Graphene and graphene oxide (GO) -- Conclusions and futuristic approach -- References -- 5 -- Smart Nanomaterials and Their Applications -- 1. Introduction -- 2. A comparison of smart materials and common materials -- 2.1 Advantages and disadvantages of smart nanomaterials -- 2.2 Nanoparticles as sensor -- 3. Types of smart nanomaterials based on stimuli -- 3.1 Physical stimuli-responsive smart nanomaterials -- 3.1.1 Thermoresponsive smart nanomaterials -- 3.1.2 Piezoelectric smart nanomaterials -- 3.1.3 Electrochemical-responsive smart nanomaterials -- 3.1.4 Magneto responsive smart nanomaterials -- 3.1.5 Light responsive smart nanomaterials -- 3.2 Chemical-responsive smart nanomaterials -- 3.2.1 pH-responsive smart nanomaterials -- 3.2.2 Enzyme-responsive smart nanomaterials -- Conclusions -- Acknowledgments -- References -- 6 -- Emerging Nanomaterials in Drug Delivery and Therapy -- 1. Introduction -- 2. Nanomaterials in drug delivery and therapy -- 2.1 Liposomes -- 2.2 Micelles -- 2.3 Lipoprotein-based nanomaterials -- 2.4 Hydrogel -- 2.5 Dendrimers -- 2.6 Carbon nanotubes (CNTs) -- 3. Barriers and challenges -- Conclusions and future perspectives -- References -- 7.
Hybrid Nanomaterials: Historical Developments, Classification and Biomedical Applications -- 1. Introduction -- 2. History of hybrid nanomaterials -- 3. Classification of hybrid nanomaterials -- 3.1 First-class hybrid nanomaterials -- 3.2 Second-class hybrid nanomaterials -- 4. Strategies for synthesis of hybrid nanomaterials -- 4.1 In situ formation -- 4.2 Sol-gel process -- 4.3 Electrocrystallization -- 4.4 Hydrothermal method -- 4.5 Wet chemistry approach -- 4.6 Polymerization of organic monomers with preformed inorganic components -- 4.7 Simultaneous incorporation of components -- 5. Applications of hybrid nanomaterials -- 5.1 Mesoporous silica based hybrid nanoparticles -- 5.2 Quantum dot based hybrid nanomaterials -- 5.3 `Nanoscale metal-organic frameworks based hybrid nanomaterials -- 5.4 Iron oxide nanoparticle based hybrid system -- Conclusions -- Acknowledgement -- Competing financial interests -- References -- 8 -- Carbon Nanomaterials for Efficient Perovskite Solar Cells -- 1. Introduction -- 2. Carbon nanotubes (CNTs) in various components of perovskite solar cells -- 2.1 CNT in perovskite layer -- 2.2 Carbon nanotubes in hole transport layer -- Conclusions -- References -- 9 -- Nanoemulsions: Preparation, Properties and Applications -- 1. Introduction -- 2. Preparation of nanoemulsion -- 2.1 High energy method -- 2.1.1 High pressure homogenizer -- 2.1.2 Ultrasonication -- 2.1.3 Microfluidzation method -- 2.2 Low energy methods -- 2.2.1 Phase inversion temperature method (PIT) -- 2.2.2 Phase inversion composition method -- 2.2.3 Spontaneous emulsification -- 2.3 Vapour condensation method: new preparation technique for nanoemulsions -- 3. Properties and characterization of nanoemulsion -- 3.1 Stability -- 3.2 Structure-function property -- 3.3 Rheology -- 3.4 Optical property -- 3.5 Mechanical and barrier properties.
3.6 Release property -- 4. Applications of nanoemulsions -- 4.1 Food -- 4.2 Cosmetics -- 4.3 Cell culture technology -- 4.4 Non-toxic disinfectant -- 4.5 Drug delivery -- 4.5.1 Oral delivery -- 4.5.2 Permanent drug delivery -- 4.5.3 Pulmonary drug delivery -- 4.5.4 Intranasal drug delivery -- 4.5.5 Ocular drug delivery system -- 4.5.6 Dermal and transdermal drug delivery system -- 4.5.7 Vaccine delivery -- 4.5.8 Cancer therapy -- 4.5.9 Gene therapy -- 4.6 Nanoemulsion in agriculture -- Conclusions -- References -- 10 -- Effect of Nanomaterials on the Properties of Binding Materials in the Construction Industry -- 1. Introduction -- 2. Different type of binding materials in construction industry -- 2.1 Portland cement and concrete -- 2.2 Geopolymer cement and concrete -- 2.3 LC3 -- 3. Nanomaterials -- 4. Nanoscience and nanotechnology in the building sector -- 5. NMs in cement and concrete -- 5.1 Effect of nano silica -- 5.2 Effect of nano-Fe2O3 -- 5.3 Effect of nano-CaCO3 (NC) -- 5.4 Effect of nano Al2O3 (NA) -- 5.5 Effect of nano ZnO(NZ) -- 5.6 Effect of nano TiO2 (NT) -- 5.7 Effect of carbon nanotubes (CNT) -- 5.8 Effect of graphene based NMs -- 5.9 Effect of nano-clay -- 5.10 Effect of nano-enhanced phase change materials -- 6. Nanomaterials and their impact on the properties of geopolymer cement concrete -- 6.1 Effect of nanosilica (NS) -- 6.2 Effect of nano TiO2 (NT) -- 6.3 Effect of nanoclay -- 6.4 Effect of nanocarbons -- 6.5 Effect of nanoalumina (NA) -- 7. LC3 in presence of nano silica -- Conclusions -- References -- 11 -- Nanoparticles Incorporated Soy Protein Isolate for Emerging Applications in Medical and Biomedical Sectors -- 1. Introduction -- 2. Soy protein based nanocomposites -- 3. Techniques for preparation of nanocomposites based soy protein materials -- 3.1 Wet process -- 3.2 Dry process.
4. Different types of SPI-nanocomposites.
Record Nr. UNINA-9911008445903321
Singh N. B  
Millersville : , : Materials Research Forum LLC, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Local and global bifurcations of flow fields during physical vapor transport: application to a microgravity experiment / / W.M.B. Duval, N.B. Singh, M.E. Glicksman
Local and global bifurcations of flow fields during physical vapor transport: application to a microgravity experiment / / W.M.B. Duval, N.B. Singh, M.E. Glicksman
Autore Duval Walter M. B.
Pubbl/distr/stampa Cleveland, Ohio : , : National Aeronautics and Space Administration, Lewis Research Center, , December 1996
Descrizione fisica 1 online resource (25 pages) : illustrations
Collana NASA technical memorandum
Soggetto topico Crystal growth
Flow distribution
Mercury compounds
Mathematical models
Rayleigh number
Convection
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Local and global bifurcations of flow fields during physical vapor transport
Record Nr. UNINA-9910707309203321
Duval Walter M. B.  
Cleveland, Ohio : , : National Aeronautics and Space Administration, Lewis Research Center, , December 1996
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui