top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Design and Optimization of Mobile Robotics for Industry 5. 0
Design and Optimization of Mobile Robotics for Industry 5. 0
Autore Gatti Rathishchandra R
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (428 pages)
Disciplina 670.285
Altri autori (Persone) SinghChandra
B. SAjith
Irudaya RajE. Fantin
ISBN 1-394-38502-1
1-394-38501-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911034469003321
Gatti Rathishchandra R  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Digital Convergence in Intelligent Mobility Systems
Digital Convergence in Intelligent Mobility Systems
Autore Gatti Rathishchandra R
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (410 pages)
Altri autori (Persone) SinghChandra
ISBN 1-394-27527-7
1-394-27526-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911019934903321
Gatti Rathishchandra R  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling and Optimization of Optical Communication Networks / / edited by Chandra Singh [and three others]
Modeling and Optimization of Optical Communication Networks / / edited by Chandra Singh [and three others]
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., and Scrivener Publishing LLC, , [2023]
Descrizione fisica 1 online resource (431 pages)
Disciplina 781.34
Soggetto topico Computer networks
Application software
Electrical engineering
Management information systems
ISBN 1-119-83955-6
1-119-83956-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Investigation on Optical Sensors for Heart Rate Monitoring -- 1.1 Introduction -- 1.2 Overview of PPG -- 1.2.1 PPG Waveform -- 1.2.2 Photoplethysmography Waveforms Based on the Origin of Optical Concern -- 1.2.3 Photoplethysmography's Early on and Modern Records -- 1.2.4 Building Blocks of Photoplethysmography -- 1.2.5 Protocol Measurement and Reproducibility -- 1.3 Clinical Application - Heart Rate Monitoring -- 1.4 Summary -- References -- Chapter 2 Adopting a Fusion Approach for Optical Amplification -- 2.1 Introduction -- 2.2 The Mechanism Involved -- 2.3 Types of Amplifier -- 2.3.1 Semiconductor Optical Amplifiers -- 2.3.1.1 Various Phases and Progress of SOA -- 2.3.2 Fiber Raman Amplifiers -- 2.3.3 Fiber Brillouin Amplifiers -- 2.3.4 Doped-Fiber Amplifiers -- 2.4 Hybrid Optical Amplifiers -- 2.4.1 EDFA and SOA Hybrid -- 2.4.2 EDFA and FRA Hybrid -- 2.4.3 RFA and SOA Hybrid -- 2.4.4 Combination of EYDWA as well as SOA -- 2.4.5 EDFA-EYCDFA Hybrid -- 2.4.6 TDFA Along with RFA Hybrid -- 2.4.7 EDFA and TDFA Hybrid -- 2.5 Applications -- 2.5.1 Telecom Infrastructure Optical Power Amplifier -- 2.6 Current Scenario -- 2.7 Discussion -- 2.8 Conclusions -- References -- Chapter 3 Optical Sensors -- 3.1 Introduction -- 3.2 Glass Fibers -- 3.3 Plastic Fibers -- 3.4 Optical Fiber Sensors Advantages Over Traditional Sensors -- 3.5 Fiber Optic Sensor Principles -- 3.6 Classification of Fiber Optic Sensors -- 3.6.1 Intrinsic Fiber Optic Sensor -- 3.6.2 Extrinsic Fiber Optic Sensor -- 3.6.3 Intensity-Modulated Sensors -- 3.6.3.1 Intensity Type Fiber Optic Sensor Using Evanescent Wave Coupling -- 3.6.3.2 Intensity Type Fiber Optic Sensor Using Microbend Sensor -- 3.6.4 Phase Modulated Fiber Optic Sensors -- 3.6.4.1 Fiber Optic Gyroscope -- 3.6.4.2 Fiber-Optic Current Sensor.
3.6.5 Polarization Modulated Fiber Optic Sensors -- 3.6.6 Physical Sensor -- 3.6.6.1 Temperature Sensors -- 3.6.6.2 Proximity Sensor -- 3.6.6.3 Depth/Pressure Sensor -- 3.6.7 Chemical Sensor -- 3.6.8 Bio-Medical Sensor -- 3.7 Optical Fiber Sensing Applications -- 3.7.1 Application in the Medicinal Field -- 3.7.2 Application in the Agriculture Field -- 3.7.3 Application in Civil Infrastructure -- 3.8 Conclusion -- References -- Chapter 4 Defective and Failure Sensor Detection and Removal in a Wireless Sensor Network -- 4.1 Introduction -- 4.2 Related Works -- 4.3 Proposed Detection and Elimination Approach -- 4.3.1 Scanning Algorithm for Cut Tracking (SCT) -- 4.3.2 Eliminate Faulty Sensor Algorithm (EFS) -- 4.4 Results and Discussion -- 4.5 Performance Evaluation -- 4.6 Conclusion -- References -- Chapter 5 Optical Fiber and Prime Optical Devices for Optical Communication -- 5.1 Introduction -- 5.2 Optic Fiber Systems Development -- 5.3 Optical Fiber Transmission Link -- 5.4 Optical Sources Suited for Optical Fiber Communication -- 5.5 LED as Optical Source -- 5.6 Laser as Light Source -- 5.7 Optical Fiber -- 5.8 Fiber Materials -- 5.9 Benefits of Optical Fiber -- 5.10 Drawbacks of Optical Fiber -- 5.11 Recent Advancements in Fiber Technology -- 5.12 Photodetector -- 5.13 Future of Optical Fiber Communication -- 5.14 Applications of Optical Fibers in the Industry -- 5.15 Conclusion -- References -- Chapter 6 Evaluation of Lower Layer Parameters in Body Area Networks -- 6.1 Introduction -- 6.2 Problem Definition -- 6.3 Baseline MAC in IEEE 802.15.6 -- 6.4 Ultra Wideband (UWB) PHY -- 6.5 Castalia -- 6.5.1 Features -- 6.6 Methodology -- 6.6.1 Simulation Method in Castalia -- 6.6.2 Hardware Methodology -- 6.7 Results and Discussion -- 6.8 Hardware Setup Using Bluetooth Module -- 6.9 Hardware Setup Using ESP 12-E -- 6.10 Conclusions -- References.
Chapter 7 Analyzing a Microstrip Antenna Sensor Design for Achieving Biocompatibity -- 7.1 Introduction -- 7.2 Designing of Biomedical Antenna -- 7.3 Sensing Device for Biomedical Application -- 7.4 Conclusion -- References -- Chapter 8 Photonic Crystal Based Routers for All Optical Communication Networks -- 8.1 Introduction -- 8.2 Photonic Crystals -- 8.2.1 1D Photonic Crystals -- 8.2.2 2D Photonic Crystals -- 8.2.3 3D Photonic Crystals -- 8.2.4 Photonic Bandgap -- 8.2.5 Applications -- 8.3 Routers -- 8.4 Micro Ring Resonators -- 8.5 Optical Routers -- 8.5.1 Routers Based on PCRR -- 8.5.2 N x N Router Structures -- 8.5.2.1 3 x 3 Router -- 8.5.2.2 4 x 4 Router -- 8.5.2.3 6 x 6 Router -- 8.5.3 Routers Based on PC Line Defect -- 8.6 Summary -- References -- Chapter 9 Fiber Optic Communication: Evolution, Technology, Recent Developments, and Future Trends -- 9.1 Introduction -- 9.2 Basic Principles -- 9.3 Future Trends in Fiber Optics Communication -- 9.4 Advantages -- 9.5 Conclusion -- References -- Chapter 10 Difficulties of Fiber Optic Setup and Maintenance in a Developing Nation -- 10.1 Introduction -- 10.2 Related Works -- 10.3 Fiber Optic Cable -- 10.3.1 Single-Mode Cable -- 10.3.2 Multimode Cable -- 10.3.2.1 Step-Index Multimode Fiber -- 10.3.2.2 Graded-Index Multimode Fiber -- 10.3.3 Deployed Fiber Optics Cable -- 10.4 Fiber Optics Cable Deployment Strategies -- 10.4.1 Aerial Installation -- 10.4.2 Underground Installation -- 10.4.2.1 Direct-Buried -- 10.4.2.2 Installation in Duct -- 10.5 Deployment of Fiber Optics Throughout the World -- 10.5.1 Fiber Optics Deployment in India -- 10.5.2 Submarine Fiber Optic in India -- 10.5.3 Installation of Fiber Optic Cable in the Inland -- 10.6 Fiber Deployment Challenges -- 10.6.1 Deploying Fiber has a Number of Technical Difficulties -- 10.6.2 Right of Way -- 10.6.3 Administrative Challenges.
10.6.4 Post-Fiber Deployment Management -- 10.6.5 Fiber Optic Cable Deployment and Management Standards and Best Practices -- 10.7 Conclusion -- References -- Chapter 11 Machine Learning-Enabled Flexible Optical Transport Networks -- 11.1 Introduction -- 11.2 Review of SDM-EON Physical Models -- 11.2.1 Optical Fibers for SDM-EON -- 11.2.2 Switching Techniques for SDM-EON -- 11.3 Review of SDM-EON Resource Assignment Techniques -- 11.4 Research Challenges in SDM-EONs -- 11.5 Conclusion -- References -- Chapter 12 Role of Wavelength Division Multiplexing in Optical Communication -- 12.1 Introduction -- 12.2 Modules of an Optical Communication System -- 12.2.1 How a Fiber Optic Communication Works? -- 12.2.2 Codes of Fiber Optic Communication System -- 12.2.2.1 Dense Light Source -- 12.2.2.2 Low Loss Optical Fiber -- 12.2.3 Photo Detectors -- 12.3 Wavelength-Division Multiplexing (WDM) -- 12.3.1 Transceivers - Transmitting Data as Light -- 12.3.2 Multiplexers Enhancing the Use of Fiber Channels -- 12.3.3 Categories of WDM -- 12.4 Modulation Formats in WDM Systems -- 12.4.1 Optical Modulator -- 12.4.1.1 Direct Modulation -- 12.4.1.2 External Modulation -- 12.4.2 Modulation Formats -- 12.4.2.1 Non Return to Zero (NRZ) -- 12.4.2.2 Return to Zero (RZ) -- 12.4.2.3 Chirped RZ (CRZ) -- 12.4.2.4 Carrier Suppressed RZ (CSRZ) -- 12.4.2.5 Differential Phase Shift Key (DPSK) -- 12.4.3 Uses of Wavelength Division Multiplexing -- References -- Chapter 13 Optical Ultra-Sensitive Nanoscale Biosensor Design for Water Analysis -- 13.1 Introduction -- 13.2 Related Work or Literature Survey -- 13.2.1 B. Cereus Spores' Study for Water Quality -- 13.2.2 History Use of Optical Property for Biosensing -- 13.2.3 Photonic Crystal -- 13.3 Tools and Techniques -- 13.3.1 Opti FDTD -- 13.3.2 EM Wave Equation -- 13.3.3 Optical Ring Resonator -- 13.3.4 Output Power Computation.
13.4 Proposed Design -- 13.4.1 Circular Resonator PHC Biosensor -- 13.4.2 Triangular Structure PHC Biosensor -- 13.5 Simulation -- 13.6 Result and Analysis -- 13.7 Conclusion and Future Scope -- References -- Chapter 14 A Study on Connected Cars-V2V Communication -- 14.1 Introduction -- 14.2 Literature Survey -- 14.3 Software Description -- 14.4 Methodology -- 14.5 Working -- 14.6 Advantages and Applications -- 14.7 Conclusion and Future Scope -- Future Scope -- References -- Chapter 15 Broadband Wireless Network Era in Wireless Communication - Routing Theory and Practices -- 15.1 Introduction -- 15.2 Outline of Broadband Wireless Networking -- 15.2.1 Type of Broadband Wireless Networks -- 15.2.1.1 Fixed Networks -- 15.2.1.2 The Broadband Mobile Wireless Networks -- 15.2.2 BWN Network Structure -- 15.2.3 Wireless Broadband Applications -- 15.2.4 Promising Approaches Beyond BWN -- 15.3 Routing Mechanisms -- 15.4 Security Issues and Mechanisms in BWN -- 15.4.1 DoS Attack -- 15.4.2 Distributed Flooding DoS -- 15.4.3 Rogue and Selfish Backbone Devices -- 15.4.4 Authorization Flooding on Backbone Devices -- 15.4.5 Node Deprivation Attack -- 15.5 Conclusion -- References -- Chapter 16 Recent Trends in Optical Communication, Challenges and Opportunities -- 16.1 Introduction -- 16.2 Optical Fiber Communication -- 16.3 Applications of Optical Communication -- 16.4 Various Sectors of Optical Communication -- 16.5 Conclusion -- References -- Chapter 17 Photonic Communication Systems and Networks -- 17.1 Introduction -- 17.2 History of LiFi -- 17.3 LiFi Standards -- 17.4 Related Work -- 17.5 Methodology -- 17.6 Proposed Model -- 17.7 Experiment and Results -- 17.8 Applications -- 17.9 Conclusion -- Acknowledgment -- References -- Chapter 18 RSA-Based Encryption Approach for Preserving Confidentiality Against Factorization Attacks -- 18.1 Introduction.
18.2 Related Work.
Record Nr. UNINA-9910830253803321
Hoboken, NJ : , : John Wiley & Sons, Inc., and Scrivener Publishing LLC, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Self-Powered Cyber Physical Systems
Self-Powered Cyber Physical Systems
Autore Gatti Rathishchandra R
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (415 pages)
Altri autori (Persone) SinghChandra
AgrawalRajeev
SerraoFelcy Jyothi
ISBN 1-119-84202-6
1-119-84201-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgements -- Chapter 1 Self-Powered Sensory Transducers: A Way Toward Green Internet of Things -- 1.1 Introduction -- 1.2 Need of the Work -- 1.3 Energy Scavenging Schemes in WSAN -- 1.3.1 Photovoltaic or Solar Cell -- 1.3.2 Temperature Gradient -- 1.3.3 Pressure Variations -- 1.3.4 Plant Microbial Fuel -- 1.3.5 Wind/Liquid Flow -- 1.3.6 Vibrations -- 1.3.7 Friction -- 1.4 Self Powered Systems and Green IoT (G-IoT) -- 1.5 Application Area and Scope of Self-Powered System in G-IoT -- 1.5.1 Terrestrial Applications -- 1.5.1.1 Agriculture -- 1.5.1.2 Smart Home and Cities -- 1.5.1.3 Industry -- 1.5.1.4 Medicines -- 1.5.1.5 Environment Monitoring -- 1.5.1.6 Structural Monitoring -- 1.5.1.7 Indoor Applications -- 1.5.1.8 Arial Vehicles -- 1.5.1.9 Military Applications -- 1.5.1.10 Underwater Applications -- 1.5.1.11 Submarine and Event Localization -- 1.5.1.12 Water Contamination -- 1.5.1.13 Intelligent Water Distribution and Smart Meter -- 1.5.1.14 Underground Applications -- 1.5.1.15 Coal and Petroleum Mining Application -- 1.5.1.16 Underground Structural Monitoring -- 1.6 Challenges and Future Scope of the Self-Powered G-IoT -- 1.6.1 Challenges Pertain to Energy Efficient Design and Protocols -- 1.6.2 Size and Cost of the Harvester -- 1.6.3 Energy-Efficient Routing and Scheduling Protocols -- 1.6.4 Design of Application-Specific Passive Wake-Up Receivers -- 1.6.5 Redefined Protocol with Application-Specific Goals -- 1.6.6 Embedded Operating Systems -- 1.6.7 AI and Cloud-Assisted Lifetime Prediction Techniques -- 1.6.8 Design of Energy-Efficient/Harvested Service-Oriented Architecture -- 1.6.9 Smart Web Interfaces for Monitoring -- 1.6.10 Cross Layer Exploitations with Energy Harvesting -- 1.6.11 Security Aspects and Need of Standardization.
1.6.12 Challenges Related to Energy Harvesting Techniques -- 1.6.13 Generic Energy Generator -- 1.6.14 Hybrid Energy Sources -- 1.6.15 Cooperation Among Different Energy Sources -- 1.6.16 Energy Storage -- 1.6.17 Intelligent Prediction Model for Amount of Harvested Energy -- 1.6.18 Focus on Energy Generator for Underwater and Underground Applications -- 1.7 Conclusion -- References -- Chapter 2 Self-Powered Wireless Sensor Networks in Cyber Physical System -- 2.1 Introduction -- 2.2 Wireless Sensor Networks in CPS -- 2.3 Architecture of WSNs with Energy Harvesting -- 2.4 Energy Harvesting for WSN -- 2.5 Energy Harvesting Due to Mechanical Vibrations -- 2.6 Piezoelectric Generators -- 2.7 Piezoelectric Materials -- 2.8 Types of Piezoelectric Structures -- 2.8.1 Nanogenerators -- 2.8.2 Piezoelectric Nanogenerators -- 2.8.3 Triboelectric Nanogenerators -- 2.8.4 Pyroelectric Nanogenerators -- 2.8.5 Thermoelectric Nanogenerator -- 2.9 Hybridized Nanogenerators for Energy Harvesting -- 2.10 Conclusion -- References -- Chapter 3 The Emergence of Cyber-Physical System in the Context of Self-Powered Soft Robotics -- 3.1 Introduction -- 3.2 Actuators and Its Types -- 3.2.1 Nature of Actuation -- 3.2.1.1 Actuators Based on Thermal Materials -- 3.2.1.2 Actuators Based on Pressure -- 3.2.1.3 Actuators Based on Photo Responsivity -- 3.2.1.4 Actuators Based on Explosive Function -- 3.2.1.5 Electric Actuation Methods -- 3.3 Soft Actuator Electrodes -- 3.4 Sensors -- 3.5 Soft Robotic Structures and Control Methods -- 3.6 Soft Robot Applications -- 3.7 Future Scope -- 3.8 Conclusion -- References -- Chapter 4 Dynamic Butterfly Optimization Algorithm-Based Task Scheduling for Minimizing Energy Consumption in Distributed Green Data Centers -- 4.1 Introduction -- 4.2 Related Work -- 4.2.1 Green Data Centers -- 4.2.2 Energy-Aware Task Scheduling.
4.3 Improved Dynamic Butterfly Optimization Algorithm (IDBOA)-Based Task Scheduling (IDBOATS) -- 4.3.1 Problem Definition -- 4.3.2 Delay Constraint -- 4.3.3 Green Energy Model -- 4.3.4 Energy Consumption Model -- 4.3.5 Constraint-Imposed Optimization Problem -- 4.3.6 Primitives of Dynamic Butterfly Optimization Algorithm (DBOA) -- 4.3.7 Classical Butterfly Optimization Algorithm -- 4.3.8 Transformation of BOA into DBOA using Mutation-Based Local Searching Strategy (MLSS) -- 4.4 Results and Discussion -- 4.5 Conclusion -- References -- Chapter 5 Wireless Power Transfer for IoT Applications-A Review -- 5.1 Introduction -- 5.2 Sensors -- 5.3 Actuators -- 5.4 Energy Requirement in Wireless Sensor Networks (WSNs) -- 5.5 Wireless Sensor Network and Green IoT (G-IoT) -- 5.6 Purpose of G-IoT -- 5.7 Motivation -- 5.8 Contribution -- 5.9 Need of the Work -- 5.10 Energy Transferring Schemes in WSAN -- 5.11 Electromagnetic Induction -- 5.11.1 Electrodynamic and Electrostatic -- 5.11.2 Electrostatic Field -- 5.11.3 Electrostatic Force -- 5.11.4 Electromagnetic -- 5.11.5 Electromagnetic Field -- 5.12 Inductive Coupling -- 5.13 Resonance Inductive Coupling -- 5.14 Wireless Power Transmission Using Microwaves -- 5.15 Electromagnetic Radiations -- 5.16 Conclusion -- References -- Chapter 6 Adaptive Energy Intelligence Using AI/ML Techniques -- 6.1 Introduction -- 6.2 Evolution of Cyber Physical System -- 6.3 Relationship With Internet of Things -- 6.4 Challenges in Design and Integration of Cyber Physical Systems -- 6.5 Future Challenges and Promises -- 6.6 Machine Learning Models -- 6.7 Estimation of Building Energy Consumption -- 6.8 Development of Artificial Intelligence -- 6.9 Usage of AI/ML in Adaptive Energy Management -- 6.10 Use of Hybrid/Ensemble Machine Learning Algorithm for Better Prediction -- 6.11 Conclusion -- References.
Chapter 7 Renewable Energy Smart Grids for Electric Vehicles -- 7.1 Introduction -- 7.2 Integration of Electric Vehicles (EVs) into the Power Grid -- 7.3 EV Charging and Electric Grid Interaction -- 7.4 EVs with V2G System Architecture -- 7.5 EVs and Smart Grid Infrastructure -- 7.6 Renewable Energy Sources Integration With EVs -- 7.6.1 PV Solar Energy With EVs -- 7.6.2 Wind Energy With EVs -- 7.7 Application in Transport Sector -- 7.8 Application in Micro-Grid -- 7.9 State-of-the-Art Review -- 7.10 Future Trends -- References -- Chapter 8 Recent Advances in Integrating Renewable Energy Micro-Grid Systems With Electric Vehicles -- 8.1 Introduction -- 8.2 Electric Vehicles and Renewable Energy Sources: A General Overview -- 8.2.1 Electric Vehicles -- 8.2.2 Battery Electric Vehicles -- 8.2.3 Parallel Hybrid Electric Vehicles -- 8.2.4 Battery Chargers for EVs -- 8.2.5 Renewable Energy Sources -- 8.2.5.1 Wind Energy -- 8.2.5.2 Solar Energy -- 8.3 Microgrid -- 8.3.1 Domestic Use -- 8.3.2 Industrial Use -- 8.3.3 Benefits of Microgrids -- 8.3.4 Locations of Microgrid -- 8.4 Interactions Between Cost-Conscious EVs and RESs -- 8.4.1 Operational Cost Reduction -- 8.4.2 Lowering the Electricity Generation Cost -- 8.4.3 Growth in Profit or Benefit -- 8.4.4 Reduction in Charging Cost for EVs Owners -- 8.4.5 Other Cost-Conscious Efforts -- 8.5 Interaction Between Efficiency-Conscious EVs and RESs -- 8.5.1 Microgrid Implementation -- 8.5.2 Increasing the Use of RESs -- 8.5.3 Other Works With a Focus on Efficiency -- 8.6 Open Problems -- 8.6.1 Grid Integration of RESs on a Large Scale -- 8.6.2 The Use of EV Batteries in Conjunction With RESs -- 8.6.3 V2G's Ability to Allow the Interaction of RESs -- 8.7 Conclusion -- References -- Chapter 9 Overview of Fast Charging Technologies of Electric Vehicles -- 9.1 Introduction.
9.2 Different Levels of Charging Electric Vehicles -- 9.2.1 Level I -- 9.2.2 Level II -- 9.2.3 Level III -- 9.2.4 DC vs AC -- 9.2.5 Fast Charging -- 9.3 State-of-the-Art Fast-Charging Implementation -- 9.4 DC Fast-Charging Structure -- 9.5 Fast Chargers -- 9.5.1 Fast Chargers Working -- 9.5.2 DC Plug Connectors -- 9.5.3 EV Fast-Charging Infrastructure -- 9.6 Today's Situation and Future Needs -- 9.7 Fast-Charging Point Power Requirements -- 9.8 Recent Technologies in Fast Charging, Machine Learning, and Artificial Intelligence -- 9.8.1 Machine Learning -- 9.8.2 Artificial Intelligence -- 9.8.3 Energy Storage Materials -- 9.9 Effect of Fast Charging on EV Powertrain Systems -- 9.9.1 Battery Technology Gap and Lithium Plating -- 9.9.2 Thermal Management Systems -- 9.9.3 Battery Cycle Life -- 9.10 Grid Impacts Caused by EV Charging -- 9.10.1 Impact on Load Profile -- 9.10.2 Impact on Grid Components -- 9.10.3 Impact on Power Losses -- 9.10.4 Impact on Voltage Profile -- 9.10.5 Harmonic Impact -- 9.11 Fast-Charging Technologies on the Self-Powered Automotive Cyber-Physical Systems -- 9.12 Conclusions -- References -- Chapter 10 A Survey of VANET Routing Attacks and Defense Mechanisms in Intelligent Transportation System -- 10.1 Introduction -- 10.2 Attacks in VANET -- 10.2.1 Attack on V2V Communication -- 10.2.2 Various Attacks on Safety Applications -- 10.2.3 Attack on Infotainment Applications -- 10.3 Impacts of Attacks on VANET Routing -- 10.4 Nonintentional Misbehavior -- 10.5 Intentional Misbehavior -- 10.6 Defence Mechanism of Routing Attacks in VANET Routing -- 10.7 Intrusion Detection Techniques in VANETs -- 10.8 Anonymous Routing in VANETs -- 10.9 Challenges and Future Directions -- 10.10 Conclusion -- References -- Chapter 11 ANN-Based Cracking Model for Flexible Pavement in the Urban Roads -- 11.1 Introduction -- 11.2 Literature Review.
11.3 Methodology.
Record Nr. UNINA-9910829866003321
Gatti Rathishchandra R  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Self-Powered Cyber Physical Systems
Self-Powered Cyber Physical Systems
Autore Gatti Rathishchandra R
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (415 pages)
Disciplina 621.39
Altri autori (Persone) SinghChandra
AgrawalRajeev
SerraoFelcy Jyothi
Soggetto topico Data centers - Energy consumption
ISBN 9781119842026
1119842026
9781119842019
1119842018
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgements -- Chapter 1 Self-Powered Sensory Transducers: A Way Toward Green Internet of Things -- 1.1 Introduction -- 1.2 Need of the Work -- 1.3 Energy Scavenging Schemes in WSAN -- 1.3.1 Photovoltaic or Solar Cell -- 1.3.2 Temperature Gradient -- 1.3.3 Pressure Variations -- 1.3.4 Plant Microbial Fuel -- 1.3.5 Wind/Liquid Flow -- 1.3.6 Vibrations -- 1.3.7 Friction -- 1.4 Self Powered Systems and Green IoT (G-IoT) -- 1.5 Application Area and Scope of Self-Powered System in G-IoT -- 1.5.1 Terrestrial Applications -- 1.5.1.1 Agriculture -- 1.5.1.2 Smart Home and Cities -- 1.5.1.3 Industry -- 1.5.1.4 Medicines -- 1.5.1.5 Environment Monitoring -- 1.5.1.6 Structural Monitoring -- 1.5.1.7 Indoor Applications -- 1.5.1.8 Arial Vehicles -- 1.5.1.9 Military Applications -- 1.5.1.10 Underwater Applications -- 1.5.1.11 Submarine and Event Localization -- 1.5.1.12 Water Contamination -- 1.5.1.13 Intelligent Water Distribution and Smart Meter -- 1.5.1.14 Underground Applications -- 1.5.1.15 Coal and Petroleum Mining Application -- 1.5.1.16 Underground Structural Monitoring -- 1.6 Challenges and Future Scope of the Self-Powered G-IoT -- 1.6.1 Challenges Pertain to Energy Efficient Design and Protocols -- 1.6.2 Size and Cost of the Harvester -- 1.6.3 Energy-Efficient Routing and Scheduling Protocols -- 1.6.4 Design of Application-Specific Passive Wake-Up Receivers -- 1.6.5 Redefined Protocol with Application-Specific Goals -- 1.6.6 Embedded Operating Systems -- 1.6.7 AI and Cloud-Assisted Lifetime Prediction Techniques -- 1.6.8 Design of Energy-Efficient/Harvested Service-Oriented Architecture -- 1.6.9 Smart Web Interfaces for Monitoring -- 1.6.10 Cross Layer Exploitations with Energy Harvesting -- 1.6.11 Security Aspects and Need of Standardization.
1.6.12 Challenges Related to Energy Harvesting Techniques -- 1.6.13 Generic Energy Generator -- 1.6.14 Hybrid Energy Sources -- 1.6.15 Cooperation Among Different Energy Sources -- 1.6.16 Energy Storage -- 1.6.17 Intelligent Prediction Model for Amount of Harvested Energy -- 1.6.18 Focus on Energy Generator for Underwater and Underground Applications -- 1.7 Conclusion -- References -- Chapter 2 Self-Powered Wireless Sensor Networks in Cyber Physical System -- 2.1 Introduction -- 2.2 Wireless Sensor Networks in CPS -- 2.3 Architecture of WSNs with Energy Harvesting -- 2.4 Energy Harvesting for WSN -- 2.5 Energy Harvesting Due to Mechanical Vibrations -- 2.6 Piezoelectric Generators -- 2.7 Piezoelectric Materials -- 2.8 Types of Piezoelectric Structures -- 2.8.1 Nanogenerators -- 2.8.2 Piezoelectric Nanogenerators -- 2.8.3 Triboelectric Nanogenerators -- 2.8.4 Pyroelectric Nanogenerators -- 2.8.5 Thermoelectric Nanogenerator -- 2.9 Hybridized Nanogenerators for Energy Harvesting -- 2.10 Conclusion -- References -- Chapter 3 The Emergence of Cyber-Physical System in the Context of Self-Powered Soft Robotics -- 3.1 Introduction -- 3.2 Actuators and Its Types -- 3.2.1 Nature of Actuation -- 3.2.1.1 Actuators Based on Thermal Materials -- 3.2.1.2 Actuators Based on Pressure -- 3.2.1.3 Actuators Based on Photo Responsivity -- 3.2.1.4 Actuators Based on Explosive Function -- 3.2.1.5 Electric Actuation Methods -- 3.3 Soft Actuator Electrodes -- 3.4 Sensors -- 3.5 Soft Robotic Structures and Control Methods -- 3.6 Soft Robot Applications -- 3.7 Future Scope -- 3.8 Conclusion -- References -- Chapter 4 Dynamic Butterfly Optimization Algorithm-Based Task Scheduling for Minimizing Energy Consumption in Distributed Green Data Centers -- 4.1 Introduction -- 4.2 Related Work -- 4.2.1 Green Data Centers -- 4.2.2 Energy-Aware Task Scheduling.
4.3 Improved Dynamic Butterfly Optimization Algorithm (IDBOA)-Based Task Scheduling (IDBOATS) -- 4.3.1 Problem Definition -- 4.3.2 Delay Constraint -- 4.3.3 Green Energy Model -- 4.3.4 Energy Consumption Model -- 4.3.5 Constraint-Imposed Optimization Problem -- 4.3.6 Primitives of Dynamic Butterfly Optimization Algorithm (DBOA) -- 4.3.7 Classical Butterfly Optimization Algorithm -- 4.3.8 Transformation of BOA into DBOA using Mutation-Based Local Searching Strategy (MLSS) -- 4.4 Results and Discussion -- 4.5 Conclusion -- References -- Chapter 5 Wireless Power Transfer for IoT Applications-A Review -- 5.1 Introduction -- 5.2 Sensors -- 5.3 Actuators -- 5.4 Energy Requirement in Wireless Sensor Networks (WSNs) -- 5.5 Wireless Sensor Network and Green IoT (G-IoT) -- 5.6 Purpose of G-IoT -- 5.7 Motivation -- 5.8 Contribution -- 5.9 Need of the Work -- 5.10 Energy Transferring Schemes in WSAN -- 5.11 Electromagnetic Induction -- 5.11.1 Electrodynamic and Electrostatic -- 5.11.2 Electrostatic Field -- 5.11.3 Electrostatic Force -- 5.11.4 Electromagnetic -- 5.11.5 Electromagnetic Field -- 5.12 Inductive Coupling -- 5.13 Resonance Inductive Coupling -- 5.14 Wireless Power Transmission Using Microwaves -- 5.15 Electromagnetic Radiations -- 5.16 Conclusion -- References -- Chapter 6 Adaptive Energy Intelligence Using AI/ML Techniques -- 6.1 Introduction -- 6.2 Evolution of Cyber Physical System -- 6.3 Relationship With Internet of Things -- 6.4 Challenges in Design and Integration of Cyber Physical Systems -- 6.5 Future Challenges and Promises -- 6.6 Machine Learning Models -- 6.7 Estimation of Building Energy Consumption -- 6.8 Development of Artificial Intelligence -- 6.9 Usage of AI/ML in Adaptive Energy Management -- 6.10 Use of Hybrid/Ensemble Machine Learning Algorithm for Better Prediction -- 6.11 Conclusion -- References.
Chapter 7 Renewable Energy Smart Grids for Electric Vehicles -- 7.1 Introduction -- 7.2 Integration of Electric Vehicles (EVs) into the Power Grid -- 7.3 EV Charging and Electric Grid Interaction -- 7.4 EVs with V2G System Architecture -- 7.5 EVs and Smart Grid Infrastructure -- 7.6 Renewable Energy Sources Integration With EVs -- 7.6.1 PV Solar Energy With EVs -- 7.6.2 Wind Energy With EVs -- 7.7 Application in Transport Sector -- 7.8 Application in Micro-Grid -- 7.9 State-of-the-Art Review -- 7.10 Future Trends -- References -- Chapter 8 Recent Advances in Integrating Renewable Energy Micro-Grid Systems With Electric Vehicles -- 8.1 Introduction -- 8.2 Electric Vehicles and Renewable Energy Sources: A General Overview -- 8.2.1 Electric Vehicles -- 8.2.2 Battery Electric Vehicles -- 8.2.3 Parallel Hybrid Electric Vehicles -- 8.2.4 Battery Chargers for EVs -- 8.2.5 Renewable Energy Sources -- 8.2.5.1 Wind Energy -- 8.2.5.2 Solar Energy -- 8.3 Microgrid -- 8.3.1 Domestic Use -- 8.3.2 Industrial Use -- 8.3.3 Benefits of Microgrids -- 8.3.4 Locations of Microgrid -- 8.4 Interactions Between Cost-Conscious EVs and RESs -- 8.4.1 Operational Cost Reduction -- 8.4.2 Lowering the Electricity Generation Cost -- 8.4.3 Growth in Profit or Benefit -- 8.4.4 Reduction in Charging Cost for EVs Owners -- 8.4.5 Other Cost-Conscious Efforts -- 8.5 Interaction Between Efficiency-Conscious EVs and RESs -- 8.5.1 Microgrid Implementation -- 8.5.2 Increasing the Use of RESs -- 8.5.3 Other Works With a Focus on Efficiency -- 8.6 Open Problems -- 8.6.1 Grid Integration of RESs on a Large Scale -- 8.6.2 The Use of EV Batteries in Conjunction With RESs -- 8.6.3 V2G's Ability to Allow the Interaction of RESs -- 8.7 Conclusion -- References -- Chapter 9 Overview of Fast Charging Technologies of Electric Vehicles -- 9.1 Introduction.
9.2 Different Levels of Charging Electric Vehicles -- 9.2.1 Level I -- 9.2.2 Level II -- 9.2.3 Level III -- 9.2.4 DC vs AC -- 9.2.5 Fast Charging -- 9.3 State-of-the-Art Fast-Charging Implementation -- 9.4 DC Fast-Charging Structure -- 9.5 Fast Chargers -- 9.5.1 Fast Chargers Working -- 9.5.2 DC Plug Connectors -- 9.5.3 EV Fast-Charging Infrastructure -- 9.6 Today's Situation and Future Needs -- 9.7 Fast-Charging Point Power Requirements -- 9.8 Recent Technologies in Fast Charging, Machine Learning, and Artificial Intelligence -- 9.8.1 Machine Learning -- 9.8.2 Artificial Intelligence -- 9.8.3 Energy Storage Materials -- 9.9 Effect of Fast Charging on EV Powertrain Systems -- 9.9.1 Battery Technology Gap and Lithium Plating -- 9.9.2 Thermal Management Systems -- 9.9.3 Battery Cycle Life -- 9.10 Grid Impacts Caused by EV Charging -- 9.10.1 Impact on Load Profile -- 9.10.2 Impact on Grid Components -- 9.10.3 Impact on Power Losses -- 9.10.4 Impact on Voltage Profile -- 9.10.5 Harmonic Impact -- 9.11 Fast-Charging Technologies on the Self-Powered Automotive Cyber-Physical Systems -- 9.12 Conclusions -- References -- Chapter 10 A Survey of VANET Routing Attacks and Defense Mechanisms in Intelligent Transportation System -- 10.1 Introduction -- 10.2 Attacks in VANET -- 10.2.1 Attack on V2V Communication -- 10.2.2 Various Attacks on Safety Applications -- 10.2.3 Attack on Infotainment Applications -- 10.3 Impacts of Attacks on VANET Routing -- 10.4 Nonintentional Misbehavior -- 10.5 Intentional Misbehavior -- 10.6 Defence Mechanism of Routing Attacks in VANET Routing -- 10.7 Intrusion Detection Techniques in VANETs -- 10.8 Anonymous Routing in VANETs -- 10.9 Challenges and Future Directions -- 10.10 Conclusion -- References -- Chapter 11 ANN-Based Cracking Model for Flexible Pavement in the Urban Roads -- 11.1 Introduction -- 11.2 Literature Review.
11.3 Methodology.
Record Nr. UNINA-9911018833803321
Gatti Rathishchandra R  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui