Algae and Environmental Sustainability [[electronic resource] /] / edited by Bhaskar Singh, Kuldeep Bauddh, Faizal Bux |
Edizione | [1st ed. 2015.] |
Pubbl/distr/stampa | New Delhi : , : Springer India : , : Imprint : Springer, , 2015 |
Descrizione fisica | 1 online resource (194 p.) |
Disciplina | 570 |
Collana | Developments in Applied Phycology |
Soggetto topico |
Microbiology
Renewable energy resources Pollution Plant physiology Microbial ecology Eukaryotic Microbiology Renewable and Green Energy Pollution, general Plant Physiology Microbial Ecology |
ISBN | 81-322-2641-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. ALGAE: Promising Future Feed stock for Biofuels -- 2. Phycoremediation: Future Perspective of Green Technology -- 3. Applications of algal biofilms for wastewater treatment and bioproducts production -- 4. Biofuel production along with remediation of sewage water through Algae -- 5. The role of anaerobic digestion in algal biorefineries: clean energy production, organic waste treatment and nutrient loop closure -- 6. Algae based biohydrogen: Current status of bioprocess routes, economical assessment and major bottlenecks -- 7. Bio-oil and biodiesel as biofuels derived from microalgal oil and their characterization by using instrumental techniques -- 8. Remediation of dyes from aquatic ecosystems by biosorption method using algae -- 9. Bioremediation and decolourization of biomethanated distillery spent wash through Algae -- 10. Genetic engineering tools for enhancing lipid production in microalgae -- 11. Phycoremediation of Emerging Contaminants -- 12. Carbon dioxide sequestration by microalgae: Biorefinary approach for clean energy and environment -- 13. Remote Sensing strategy for the study of algal monitoring -- 14. Life Cycle Assessment of Algal Biofuels. |
Record Nr. | UNINA-9910298442203321 |
New Delhi : , : Springer India : , : Imprint : Springer, , 2015 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Biodiesel: Feedstocks, Technologies, Economics and Barriers : Assessment of Environmental Impact in Producing and Using Chains / / by Armen B. Avagyan, Bhaskar Singh |
Autore | Avagyan Armen B |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (XII, 128 p. 15 illus., 12 illus. in color.) |
Disciplina | 577 |
Soggetto topico |
Applied ecology
Environmental chemistry Environmental management Environmental engineering Biotechnology Sustainable development Popular works Applied Ecology Environmental Chemistry Environmental Management Environmental Engineering/Biotechnology Sustainable Development Popular Science, general |
ISBN | 981-13-5746-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910350359403321 |
Avagyan Armen B
![]() |
||
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Novel feedstocks for biofuels production / / Abhishek Guldhe, Bhaskar Singh, editors |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (374 pages) |
Disciplina | 662.88 |
Collana | Clean energy production technologies |
Soggetto topico |
Biomass energy
Energy crops |
ISBN | 981-19-3582-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgement -- Contents -- Editors and Contributors -- Chapter 1: Biofuel Production from Conventional Feedstocks: Challenges and Alternatives -- 1.1 Introduction -- 1.2 Types of Biofuel Feedstock -- 1.2.1 First Generation -- 1.2.2 Second Generation -- 1.2.3 Third Generation -- 1.2.4 Fourth Generation -- 1.3 Types of Biofuel -- 1.3.1 Bioethanol -- 1.3.2 Biodiesel -- 1.4 Challenges with Conventional Biofuel Feedstocks -- 1.4.1 Environmental Impacts -- 1.4.2 Socio-economic Issues -- 1.4.3 Technological Issues -- 1.4.4 Certification Issues -- 1.5 Application of Waste Materials as Feedstock for Biofuel Production -- 1.5.1 Waste Oil -- 1.5.2 Fishery Waste -- 1.5.3 Animal Fats -- 1.5.4 Agricultural Waste -- 1.5.5 Food Waste -- 1.5.6 Microalgae Biofuel Feedstock -- 1.6 Summary and Future Research -- References -- Chapter 2: Novel Feedstocks for Biofuels: Current Scenario and Recent Advancements -- 2.1 Introduction -- 2.2 Biofuels -- 2.2.1 First-Generation Biofuels -- 2.2.2 Second-Generation Biofuels -- 2.2.3 Third-Generation Biofuels -- 2.2.4 Fourth-Generation Biofuels -- 2.3 Types of Biofuels -- 2.3.1 Bioethanol -- 2.3.2 Biodiesel -- 2.3.3 Biogas -- 2.4 Biofuel Production from Various Novel Feedstocks -- 2.4.1 Biofuel Production Using Biomass and Lignocellulose-Based Feedstocks -- 2.4.1.1 Non-edible Forest Products -- 2.4.1.2 Aquatic Weeds -- 2.4.1.3 Microalgae -- 2.4.2 Biofuel Production Using Non-edible Oilseeds -- 2.4.3 Biofuel Production Using Waste Products -- 2.4.3.1 Municipal Solid Waste -- 2.4.3.2 Waste Oils -- 2.4.3.3 Sewage Wastes -- 2.5 Challenges of Using Novel Feedstocks -- 2.6 Future Prospects and Conclusion -- References -- Chapter 3: Non-edible Oil Plants for Biodiesel Production -- 3.1 Introduction -- 3.2 Global Scenario of the Biodiesel Production -- 3.3 Agricultural Aspects About Non-edible Plants.
3.4 Physicochemical Properties of Non-edible Oil Feedstock -- 3.5 Biodiesel Production from Non-edible Oils: Case Studies -- 3.5.1 Physicochemical Proprieties and Biodiesel Quality -- 3.5.2 Emissions of Biodiesel from Non-edible Oils -- 3.6 Concluding Remarks -- References -- Chapter 4: Role of Microorganisms in Production of Biofuels -- 4.1 Overview -- 4.2 Application of Microorganisms for Waste Treatment -- 4.2.1 Microorganisms as Source of Hydrolytic Enzymes -- 4.2.1.1 Starch and Saccharification Enzymes -- Alpha-Amylase -- Beta-Amylase -- Glucoamylase -- 4.2.1.2 Pectins and Pectinolytic Enzymes -- 4.2.1.3 Hemicellulose and Hemicellulolytic Enzymes -- 4.2.1.4 Cellulose and Cellulolytic Enzymes -- 4.2.1.5 Lignin and Ligninolytic Enzymes -- 4.2.1.6 Mannan -- 4.2.2 Microorganisms for Pretreatment of Solid Waste -- 4.2.2.1 Bacterial Pretreatment -- 4.2.2.2 Fungal Pretreatment -- 4.2.3 Microorganisms for Treatment of Wastewater -- 4.3 Potential Microorganisms for Biofuel Production -- 4.3.1 Bioethanol -- 4.3.2 Biodiesel -- 4.3.3 Biogas -- 4.3.3.1 Hydrolytic Bacteria -- 4.3.3.2 Acetogenic Bacteria -- 4.3.3.3 Methanogenic Bacteria -- 4.3.4 Biohydrogen -- 4.3.4.1 Syntrophic H2-Producing Bacteria -- 4.3.4.2 Anaerobic Bacteria -- 4.3.4.3 Photosynthetic Algae -- 4.3.4.4 In Vitro Photosynthetic-Hydrogenase System -- 4.3.5 Microbial Fuel Cell -- 4.4 Microbial Factories for Biofuels -- 4.5 Whole-Cell Catalyst for Biofuel Production -- 4.6 Bioprospecting Microorganisms by Genetic and Metabolic Engineering and Synthetic Biology for Second- and Fourth-Generation... -- 4.7 Challenges and Prospects -- 4.8 Conclusions -- References -- Chapter 5: Algal Biomass for Biodiesel and Bio-oil Production -- 5.1 Introduction -- 5.2 Microalgae Cultivation -- 5.2.1 Open Raceway Ponds -- 5.2.2 Photobioreactors -- 5.3 Biomass Harvesting and Drying -- 5.3.1 Centrifugation. 5.3.2 Filtration -- 5.3.3 Flocculation -- 5.3.4 Flotation -- 5.3.5 Gravity Sedimentation -- 5.3.6 Combination of Harvesting Methods -- 5.3.7 Drying Techniques -- 5.4 Biodiesel Production from Microalgae -- 5.4.1 Lipid Extraction from Microalgal Biomass -- 5.4.2 Conversion of Lipids to Biodiesel -- 5.4.2.1 Chemical Catalysis -- 5.4.2.2 Biocatalysts -- 5.5 Bio-oil Production from Microalgae -- 5.5.1 Bio-oil Production Using Pyrolysis -- 5.5.2 Bio-oil Production Using HTL -- 5.5.3 Bio-oil Production Study by the Combination of Techniques -- 5.6 Challenges in Biodiesel Production from Microalgae -- 5.7 Challenges in Bio-oil Production from Microalgae -- 5.8 Conclusion -- References -- Chapter 6: Algae as a Feedstock for Bioethanol and Biomethane Production -- 6.1 Introduction -- 6.1.1 Microalgae Vs Macroalgae -- 6.1.2 Overview of Global Algal Production -- 6.1.3 Bioethanol Vs Biomethane -- 6.2 Economics and Limitations of Algal Biofuel Production -- 6.3 Algal Composition -- 6.4 Algae Cultivation and Harvesting Systems -- 6.4.1 Macro- and Microalgae Cultivation -- 6.4.2 Algal Harvesting Systems -- 6.5 Processing of Algae to Bioethanol and Biomethane -- 6.5.1 Pretreatment -- 6.5.1.1 Mechanical Methods -- 6.5.1.2 Ultrasound Pretreatment -- 6.5.1.3 Pretreatment by Irradiation -- 6.5.1.4 Hydrothermal Pretreatment -- 6.5.1.5 Chemical Pretreatment -- 6.5.1.6 Ozone Treatment -- 6.5.1.7 Enzymatic Pretreatment -- 6.5.1.8 Other Treatment Methods -- 6.5.2 Bioethanol Production -- 6.5.3 Biomethane Production -- 6.6 Algal Biorefinery Concept -- 6.6.1 Upstream Processing -- 6.6.2 Downstream Processing -- 6.7 Biotechnological Strategies to Improve Algal Biomass and Biofuel Production -- 6.7.1 Optimization of Physicochemical Parameters -- 6.7.2 Effect of Different Physicochemical Parameters -- 6.7.3 Genetic Engineering-Mediated Metabolite Improvement. 6.8 Life Cycle Assessment -- 6.9 Conclusion and Prospects for Future Research Works -- References -- Chapter 7: Aquatic Weeds as Bioenergy Feedstock -- 7.1 Introduction -- 7.2 Potential of Aquatic Weeds as Bioenergy Feedstock -- 7.3 Approaches for Bioenergy Production from Aquatic Weed -- 7.3.1 Biochemical Conversion -- 7.3.1.1 Anaerobic Digestion -- 7.3.1.2 Acidogenic Fermentation -- 7.3.1.3 Microbial Electrolytic Cell -- 7.3.2 Thermochemical Conversion -- 7.3.2.1 Pyrolysis -- 7.3.2.2 Hydrothermal Liquefaction -- 7.3.2.3 Gasification -- 7.4 Bio Energy Production from Aquatic Weeds -- 7.4.1 Biomethane -- 7.4.2 Bioethanol -- 7.4.3 Biohydrogen -- 7.4.4 Bio-oil -- 7.4.5 Biodiesel -- 7.5 Other High-Value Commercial Bioproducts -- 7.6 Major Challenges and Future Prospective -- 7.7 Conclusion -- References -- Chapter 8: Wastewater and Solid Waste as Feedstock for Energy Production -- 8.1 Introduction -- 8.2 Solid Waste as a Potential Feedstock -- 8.2.1 Municipal Solid Waste -- 8.2.2 Agriculture Solid Waste -- 8.2.3 Forestry Solid Waste -- 8.2.4 Industrial Waste -- 8.3 Wastewater as Feedstock -- 8.4 Feedstock to Energy Conversion Techniques -- 8.4.1 Thermochemical Route for Biomass to Energy -- 8.4.1.1 Gasification -- 8.4.1.2 Liquefaction -- 8.4.1.3 Pyrolysis -- 8.4.2 Biochemical Route for Biomass to Biofuel -- 8.5 Pretreatment Methods for Biomass -- 8.5.1 Physical Pretreatment -- 8.5.2 Physiochemical Pretreatment -- 8.5.3 Chemical Pretreatment -- 8.5.4 Biological Pretreatment -- 8.5.5 Detoxification -- 8.5.6 Hydrolysis -- 8.6 Solid Waste and Wastewater as Feedstock for the Production of Second-Generation Biofuels -- 8.6.1 Bioethanol -- 8.6.2 Biogas -- 8.6.3 Hydrogen Production -- 8.6.4 Microbial Fuel Cells from Wastewater and Solid Waste -- 8.7 Wastewater and Solid Waste as Feedstock for Third-Generation Biofuel (Biodiesel) -- 8.8 The Economics of Biofuels. 8.9 Future Prospects and Challenges -- References -- Chapter 9: Agricultural Lignocellulosic Waste for Bioethanol Production -- 9.1 Introduction -- 9.2 Chemistry of Lignocellulosic Biomass (LB): Challenges and Prospects -- 9.2.1 Cellulose -- 9.2.2 Hemicelluloses -- 9.2.3 Lignin -- 9.3 Available Techniques for Physicochemical Analysis -- 9.4 Bioethanol Production: An Overview -- 9.4.1 Pretreatment Process -- 9.4.1.1 Mechanical Processing -- 9.4.1.2 Physicochemical Pretreatment -- Steam Explosion -- Hydrothermal Pretreatment -- Acid and Alkaline Hydrolysis -- Green Solvent Versus Organic Solvents -- Enzymatic Hydrolysis -- 9.5 Enzymes and Microbes for Second-Generation Bioethanol Production -- 9.6 Advances in Pretreatment Strategies -- 9.6.1 Physical Methods -- 9.6.1.1 Milling -- 9.6.1.2 Freezing -- 9.6.1.3 Microwave -- 9.6.1.4 Ultrasound -- 9.6.2 Physicochemical Methods -- 9.6.2.1 Hydrothermal Pretreatment -- 9.6.2.2 Ionic Liquid (IL) Pretreatment -- 9.6.2.3 Biological Pretreatment -- 9.7 Agricultural Lignocellulosic Waste Feasibility Assessment for Bioethanol Production -- 9.8 Industrial Fermentation with Lignocellulosic Biomass -- 9.8.1 Selective-Fractionation Technology Based on Steam Explosion Pretreatment -- 9.8.2 Synergistic Enzymatic Hydrolysis System -- 9.8.3 Industrial Fermenting Yeast Strains -- 9.8.4 Pre-hydrolysis and Simultaneous Saccharification and Co-fermentation -- 9.8.5 Consolidated Bioprocess (CBP) -- 9.9 Biorefinery for Management of Agro-waste -- 9.10 Environmental Impact Assessment and Future Directions -- References -- Chapter 10: Food Wastes for Biofuel Production -- 10.1 Introduction -- 10.2 Food Wastes as Feedstock for Biofuel Production -- 10.2.1 Biodiesel Production -- 10.2.1.1 Non-catalytic and Catalytic Transesterification Process -- 10.2.2 Bioethanol and Biobutanol Production. 10.2.3 Biohydrogen and Biomethane Production. |
Record Nr. | UNINA-9910624381903321 |
Singapore : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Phytoremediation Potential of Bioenergy Plants / / edited by Kuldeep Bauddh, Bhaskar Singh, John Korstad |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (XX, 472 p. 81 illus., 62 illus. in color.) |
Disciplina |
660.6
628 |
Soggetto topico |
Environmental engineering
Biotechnology Waste management Environmental management Sustainable development Ecology Plant science Botany Environmental Engineering/Biotechnology Waste Management/Waste Technology Environmental Management Sustainable Development Ecology Plant Sciences |
ISBN | 981-10-3084-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. Phytoremediation: A multidimensional and ecologically viable practice for the cleanup of environmental contaminants (Poulomi Chakravarty) -- Chapter 2. Bioenergy: A sustainable approach for cleaner environment (Abhishek Guldhe) -- Chapter 3. Phytoremediation of Heavy Metal Contaminated Soil using Bioenergy Crops (Ambuj Bhushan Jha) -- Chapter 4. PHYTOREMEDIATION OF SOIL CONTAMINANTS BY BIODIESEL PLANT Jatropha curcas (Abioye OP) -- Chapter 5. Ricinus Communis: An ecological engineer and a biofuel resource (Dhananjay Kumar) -- Chapter 6. Bioenergy and Phytoremediation Potential of Millettia pinnata (Dipesh kumar) -- Chapter 7. PHYTOREMEDIATION POTENTIAL OF Leucaena leucocephala (Lam.) de Wit. FOR HEAVY METAL POLLUTED AND DEGRADED ENVIRONMENTS (Jamilu Edrisa Ssenku) -- Chapter 8. Phytoremediation potential of industrially important and biofuel plants: Azadirachta indica and Acacia nilotica (Jaya Tiwari) -- Chapter 9. Efficiency of an industrially important crop Hibiscus cannabinus for phytoremediation and bioenergy production (Neha Vishnoi) -- Chapter 10. Canabis sativa: A plant suitable for Phytoremediation and Bioenergy production (Sanjeev Kumar) -- Chapter 11. Phytoremediation and bioenergy production efficiency of medicinal and aromatic plants (Jisha C.K.) -- Chapter 12. A sustainable approach to clean contaminated land using terrestrial grasses (Anju Patel) -- Chapter 13. Macrophytes for the reclamation of degraded water bodies with potential for bio-energy production (Sangeeta Anand) -- Chapter 14. Efficiency of bioenergy plant in phytoremediation of saline and sodic soil (Priyanka Bharti) -- Chapter 15. Managing waste dumpsites through energy plantations (Vimal Chandra Pandey) -- Chapter 16. Biotechnological intervention to enhance the potential ability of bioenergy plants for phytoremediation (Gulshan Singh) -- Chapter 17. Sustainability of three (Jatropha, Karanja and Castor) oil seed bearing bio-energy plants for phytoremediation: A meta-analysis based case study of India (Dipesh Kumar) -- Chapter 18. Phycoremediation: An ecofriendly algal technology for bioremediation and bioenergy production (Sanjay Kumar Gupta) -- Chapter 19. Coupling phytoremediation appositeness with bioenergy plants: A socio-legal perspective (Rashwet Shrinkhal). |
Record Nr. | UNINA-9910254003503321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2017 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|