Vai al contenuto principale della pagina

Challenges and Opportunities in Green Hydrogen Production



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Singh Paramvir Visualizza persona
Titolo: Challenges and Opportunities in Green Hydrogen Production Visualizza cluster
Pubblicazione: Singapore : , : Springer, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (601 pages)
Altri autori: AgarwalAvinash Kumar  
ThakurAnupma  
SinhaR. K  
Nota di contenuto: Intro -- Preface -- Contents -- Editors and Contributors -- Part I Introduction to Green Hydrogen -- 1 Introduction to Challenges and Opportunities in Green Hydrogen Production -- References -- 2 Green Hydrogen: An Introduction -- 2.1 Introduction -- 2.1.1 Discovery of Hydrogen -- 2.1.2 Hydrogen-An Energy Carrier -- 2.2 Hydrogen Production Methods -- 2.2.1 Fossil Fuel Based Processes -- 2.2.2 Renewable Energy-Based Processes -- 2.2.3 Thermochemical Technologies -- 2.2.4 Biological Processes -- 2.2.5 Water Splitting Processes -- 2.3 Classification of Hydrogen Based on Colours -- 2.3.1 Black and Brown Hydrogen -- 2.3.2 Grey Hydrogen -- 2.3.3 Blue Hydrogen -- 2.3.4 Turquoise Hydrogen -- 2.3.5 Red Hydrogen -- 2.3.6 Pink/Purple Hydrogen -- 2.3.7 Yellow Hydrogen -- 2.3.8 White Hydrogen -- 2.3.9 Green Hydrogen -- 2.3.10 Definition of Green Hydrogen -- 2.3.11 CO2 Emission Caused by Green Hydrogen -- 2.4 Drivers of Green Hydrogen -- 2.5 Global Hydrogen Production -- 2.6 Applications of Hydrogen -- 2.6.1 Petroleum Refinery and Petrochemical Industry -- 2.6.2 Fertiliser Industry -- 2.6.3 Hydrogenation Process in Vegetable Oil Production -- 2.6.4 Metal Industry -- 2.6.5 Thermal Power Plant's Generator Cooling -- 2.6.6 Float Glass Industry -- 2.6.7 Hydrogen Peroxide Production -- 2.6.8 Methanol Production -- 2.6.9 Space Applications -- 2.6.10 Other Uses of Hydrogen -- 2.6.11 Hydrogen Blending with Natural Gas -- 2.6.12 Transportation -- 2.6.13 Utilisation of Hydrogen Derivatives -- 2.7 Opportunities and Challenges for Green Hydrogen -- References -- 3 Review on Revolutionary and Sustainable Green Hydrogen: A Future Energy Source -- 3.1 Introduction -- 3.2 Overview of Energy and the Environment -- 3.2.1 Energy Demand Trends -- 3.2.2 Historical Energy Source Trends -- 3.2.3 Transition to Alternative Energy Sources -- 3.3 Hydrogen as a Future Energy Source.
3.3.1 Rationale for Hydrogen -- 3.3.2 Hydrogen's Environmental Benefits -- 3.4 Pioneering a Sustainable Energy Future -- 3.4.1 Hydrogen from Fossil Fuels -- 3.4.2 Alternative Techniques for Producing Hydrogen -- 3.4.3 Production Techniques for Blue Hydrogen -- 3.5 Importance of Sustainable Hydrogen Production -- 3.5.1 Transportation Sector -- 3.5.2 Industrial Sector -- 3.5.3 Non-Energy Sector -- 3.6 The Effects of Hydrogen Production Techniques on the Environment -- 3.7 Green Hydrogen Uses and Potential Advantages -- 3.7.1 Utility-Scale Applications of Green Hydrogen -- 3.7.2 Challenges and Limitations of Green Hydrogen Production -- 3.8 Real-World Examples and Policy Recommendations -- 3.9 Present Energy Infrastructure and Its Problems: Economic and Environmental Point of View -- 3.10 Safety in Transmission -- 3.11 The Case for Fuel Cell Vehicles -- 3.11.1 Fuel Cell Vehicles (FCV) Candidate Disruptive Technology -- 3.12 Conclusions -- References -- 4 Hydrogen Energy: A New Era of Clean Energy Toward Sustainable Development -- 4.1 Introduction -- 4.1.1 History and Background -- 4.1.2 Research Gap -- 4.2 Hydrogen Energy Storage System -- 4.2.1 History of Hydrogen Storage for Vehicle System -- 4.3 Hydrogen Economy Needs -- 4.4 Hydrogen Storage Techniques -- 4.5 Electricity Production Using Hydrogen -- 4.5.1 Types of Fuel Cells -- 4.6 Major Issues and Future Scope of Hydrogen Energy Systems -- 4.6.1 Major Challenges in the Field of Hydrogen Energy Storage Systems -- 4.6.2 Transition from a Fossil Fuel-Based Economy to a Hydrogen Economy -- 4.6.3 Future Scope of Hydrogen Energy Systems -- 4.6.4 Case Studies on Sustainable Hydrogen Applications -- 4.7 Conclusion -- References -- 5 Green Hydrogen Production: Bridging the Gap to a Sustainable Energy Future -- 5.1 Introduction.
5.1.1 The Significance of Green Hydrogen in the Context of Global Sustainability -- 5.1.2 Urgent Need to Transition from Fossil Fuels to Renewable Energy Carriers -- 5.1.3 Assumptions -- 5.1.4 Structure of Chapter -- 5.2 Understanding Green Hydrogen Production -- 5.2.1 Definition and Properties of Green Hydrogen -- 5.2.2 Differentiating Green Hydrogen from Other Hydrogen Production Methods -- 5.3 Sustainable Pathways for Green Hydrogen -- 5.3.1 Utilizing Renewable Energy Sources for Electrolysis -- 5.3.2 Grid Integration and Energy Storage for a Stable Green Hydrogen Supply -- 5.4 Electrolysis Technologies -- 5.4.1 Alkaline Electrolysis -- 5.4.2 Proton Exchange Membrane (PEM) Electrolysis -- 5.4.3 Solid Oxide Electrolysis Cells (SOEC): Exploring High-Temperature Electrolysis -- 5.5 Catalysis and Materials Innovations -- 5.5.1 Cutting-Edge Catalysts for Enhanced Electrolyzer Performance -- 5.5.2 Innovative Materials for Efficient and Durable Electrolysis -- 5.5.3 Nanotechnology Applications in Green Hydrogen Production -- 5.6 Advancements in Hydrogen Production -- 5.6.1 Photo Electrochemical (PEC) Hydrogen Production: Harnessing Solar Energy -- 5.6.2 Biological Hydrogen Production: Harnessing the Power of Microorganisms -- 5.7 Green Hydrogen in Industry and Transportation -- 5.7.1 Integration of Green Hydrogen in Industrial Processes -- 5.7.2 Green Hydrogen as a Fuel for Transportation -- 5.8 Overcoming Challenges -- 5.8.1 Cost Reduction Strategies for Large-Scale Green Hydrogen Production -- 5.8.2 The Role of Supportive Policies and Incentives -- 5.9 International Collaboration for a Global Transition -- 5.9.1 Collaborative Efforts in Research and Development -- 5.9.2 International Partnerships and Agreements to Drive Green Hydrogen Adoption -- 5.10 Conclusions -- 5.10.1 Recapitulation of the Potential of Green Hydrogen in a Sustainable Energy Future.
5.10.2 Limitations -- 5.10.3 A Call to Action for Accelerated Adoption and Investment in Green Hydrogen -- References -- 6 Glance on Advancements and Innovations in Green Hydrogen Production Technologies -- 6.1 Introduction -- 6.2 Comparison of Different Hydrogen Production Methods -- 6.2.1 Generations of Water Electrolysis Development -- 6.3 Alkaline Water Electrolysis -- 6.3.1 The Operational Mechanism of Alkaline Water Electrolysis -- 6.3.2 Investigation and Advancement of the Process of Electrolysis in Alkaline Water -- 6.4 PEM Water Electrolysis -- 6.5 Solid Oxide Cell Technology for Electrolysis -- 6.6 Basic Principles of PC/PEC Water Splitting -- 6.6.1 PC Water Splitting -- 6.6.2 PEC Water Splitting -- 6.7 Biological and Microbial Electrolysis -- 6.7.1 Working Principle -- 6.7.2 Energy Recovery-Based Hybrid Processe -- 6.8 Conclusions -- References -- Part II Green Hydrogen Production -- 7 Unlocking the Opportunities: Green Hydrogen from Renewable Energy Sources -- 7.1 Introduction -- 7.2 Classification of Hydrogen Production Technologies -- 7.3 Technologies for Production of Hydrogen -- 7.4 Methods of Green Hydrogen Production -- 7.4.1 Splitting of Water -- 7.4.2 Thermochemical Process for Splitting of Water -- 7.4.3 Green Hydrogen Production from Biomass -- 7.4.4 Production of Green Hydrogen by Recycling of Aluminum -- 7.5 Overall Comparison of Green Hydrogen Production Methods -- 7.6 Cost Comparison of Different Types of Green Hydrogen -- 7.7 Challenges to Future of Green Hydrogen -- 7.8 Conclusions and Future Prospects -- References -- 8 Hydrogen Production and Utilization Through Electrochemical Techniques -- 8.1 Introduction -- 8.2 Hydrogen Production -- 8.2.1 Production of Hydrogen from Fossil Fuels -- 8.2.2 Production of Hydrogen by Water Splitting -- 8.2.3 Production of Hydrogen from Biomass.
8.2.4 Production of Hydrogen Via Biological Sources -- 8.2.5 Hydrogen Production Using Waste Gas Stream as a Source -- 8.2.6 Direct Comparison of Common Hydrogen Production Methods on the Basis of Efficiency, Environmental Impact, and Scalability -- 8.3 Hydrogen Production Through Electrochemical Techniques -- 8.3.1 Electrochemical Process -- 8.3.2 Methods to Produce Hydrogen Using Electrochemical Techniques -- 8.4 Direct Comparison Between All Electrochemical Techniques -- 8.4.1 Successful Implementation of Electrochemical Techniques -- 8.4.2 Future of Hydrogen Production Using Electrochemical Techniques-Emerging Technologies, Ongoing Researches and Advancements -- 8.5 Storage of Hydrogen -- 8.5.1 Physical Storage -- 8.5.2 Adsorption Storage -- 8.5.3 Chemical Methods to Store H2 -- 8.6 Utilization of Hydrogen -- 8.6.1 Primary Uses -- 8.6.2 Secondary Uses -- 8.6.3 Emerging Uses -- 8.7 Results and Discussions -- 8.8 Conclusions -- References -- 9 Advancements and Innovations in Green Hydrogen Technologies -- 9.1 Introduction -- 9.2 Electrolysis: Proton Exchange Membrane (PEM) and Alkaline -- 9.2.1 Green Hydrogen Synthesis Through Proton Exchange Membrane (PEM) -- 9.2.2 Green Hydrogen Synthesis Through Alkaline Water Electrolyzer -- 9.3 Solid Oxide Electrolysis Cells (SOEC) Green Hydrogen Synthesis Through Alkaline Water Electrolyzer -- 9.4 Green Hydrogen Synthesis Through Photoelectrochemical (PEC) Method -- 9.5 Biological and Microbial Electrolysis for Hydrogen Production -- 9.5.1 The Biological Processes -- 9.5.2 Microbial Electrolysis Process -- 9.6 Hybrid and Emerging Technologies for Hydrogen Production -- 9.6.1 Wind Turbines and Photovoltaic Hybrid System of Electrolysis -- 9.6.2 Solar-Wind-Bioethanol Hybrid System -- 9.6.3 Integrated Solar-Microbial System -- 9.6.4 Hydroelectric-Photovoltaic Hybrid System.
9.6.5 Solar Driven Photo-Thermal Hybrid System.
Titolo autorizzato: Challenges and Opportunities in Green Hydrogen Production  Visualizza cluster
ISBN: 981-9713-39-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910861089603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Energy, Environment, and Sustainability Series