top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Evolutionary Multi-Criterion Optimization : 13th International Conference, EMO 2025, Canberra, ACT, Australia, March 4–7, 2025, Proceedings, Part II / / edited by Hemant Singh, Tapabrata Ray, Joshua Knowles, Xiaodong Li, Juergen Branke, Bing Wang, Akira Oyama
Evolutionary Multi-Criterion Optimization : 13th International Conference, EMO 2025, Canberra, ACT, Australia, March 4–7, 2025, Proceedings, Part II / / edited by Hemant Singh, Tapabrata Ray, Joshua Knowles, Xiaodong Li, Juergen Branke, Bing Wang, Akira Oyama
Autore Singh Hemant
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (397 pages)
Disciplina 006.3
Altri autori (Persone) RayTapabrata
KnowlesJoshua
LiXiaodong
BrankeJuergen
WangBing
OyamaAkira
Collana Lecture Notes in Computer Science
Soggetto topico Artificial intelligence
Artificial Intelligence
ISBN 9789819635382
9819635381
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Algorithm analysis. -- Visual Explanations of Some Problematic Search Behaviors of Frequently Used EMO Algorithms. -- Numerical Analysis of Pareto Set Modeling. -- When Is Non-deteriorating Population Update in MOEAs Beneficial?. -- Analysis of Merge Non-dominated Sorting Algorithm. -- Comparative Analysis of Indicators for Multi-objective Diversity Optimization. -- Performance Analysis of Constrained Evolutionary Multi-Objective Optimization Algorithms on Artificial and Real-World Problems. -- On the Approximation of the Entire Pareto Front of a Constrained Multi objective Optimization Problem. -- Small Population Size is Enough in Many Cases with External Archives. -- Surrogates and machine learning. -- Knowledge Gradient for Multi-Objective Bayesian Optimization with Decoupled Evaluations. -- Surrogate Strategies for Scalarisation-based Multi-objective Bayesian Optimizers. -- A Mixed-Fidelity Evaluation Algorithm for Efficient Constrained Multi- and Many-Objective Optimization: First Results. -- Efficient and Accurate Surrogate-Assisted Approach to Multi-Objective Optimization Using Deep Neural Networks. -- Large Language Model for Multiobjective Evolutionary Optimization. -- Multi-Objective Multi-Agent Reinforcement Learning for Autonomous Driving in Mixed-Traffic Environments. -- Parallel TD3 for Policy Gradient-based Multi-Condition Multi-Objective Optimisation. -- Multi-criteria decision support. -- Reliability-based MCDM Using Objective Preferences Under Variable Uncertainty. -- An Efficient Iterative Approach for Uniformly Representing Pareto Fronts. -- Preference Learning for Multi-objective Reinforcement Learning by Means of Supervised Learning. -- Bayesian preference elicitation for decision support in multi-objective optimization.
Record Nr. UNINA-9910984686703321
Singh Hemant  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Evolutionary Multi-Criterion Optimization : 13th International Conference, EMO 2025, Canberra, ACT, Australia, March 4–7, 2025, Proceedings, Part I / / edited by Hemant Singh, Tapabrata Ray, Joshua Knowles, Xiaodong Li, Juergen Branke, Bing Wang, Akira Oyama
Evolutionary Multi-Criterion Optimization : 13th International Conference, EMO 2025, Canberra, ACT, Australia, March 4–7, 2025, Proceedings, Part I / / edited by Hemant Singh, Tapabrata Ray, Joshua Knowles, Xiaodong Li, Juergen Branke, Bing Wang, Akira Oyama
Autore Singh Hemant
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (498 pages)
Disciplina 006.3
Altri autori (Persone) RayTapabrata
KnowlesJoshua
LiXiaodong
BrankeJuergen
WangBing
OyamaAkira
Collana Lecture Notes in Computer Science
Soggetto topico Artificial intelligence
Artificial Intelligence
ISBN 9789819635061
9819635063
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Algorithm design. -- Towards an Efficient Innovation Path Seeking Algorithm Using Directed Domination. -- An MaOEA/Local Search Hybrid Based on a Fast, Stochastic BFGS Using Achievement Scalarizing Search Directions. -- Selective evaluations for expediting multi-objective bilevel optimization. -- MOAISDX: A New Multi-objective Artificial Immune System based on Decomposition. -- PAES-25: Local Search, Archiving and Multi/Many-objective PseudoBoolean Functions. -- Weights-Guided Random Bit Climber for Binary Many-objective Optimization. -- Bilevel Optimization-based Decomposition for Solving Single and Multi objective Optimization Problems. -- A Study on Optimistic & Pessimistic Pareto-fronts in Multi objective Bilevel Optimization via ?-Perturbation. -- Cumulative Step Size Adaptation for Adaptive SEMO in Integer Space. -- Adaptive Normal-Boundary Intersection Directions for Evolutionary Many objective Optimization with Complex Pareto Fronts. -- Encodings for Multi-Objective Free-Form Coverage Path Planning. -- VBEA: Voting-Based Evolutionary Algorithm for Multi-Objective Planning. -- Enhancing NSGA-II with a Knee Point for Constrained Multi-objective Optimization. -- Benchmarking. -- Single and Multi-Objective Optimization Benchmark Problems Focusing on Human-Powered Aircraft Design. -- An Extension of the Welded Beam Problem that Includes Multiple Interactng Design Concepts. -- Extended Results on Analytical Hypervolume Indicator Calculation of Linear and Quadratic Pareto Fronts. -- MO-IOHinspector: Anytime Benchmarking of Multi-Objective Algorithms using IOH profiler. -- Applications. -- Multi-Objective Sequential Decision Making for Holistic Supply Chain Optimization. -- Interactive evolutionary re optimization for ground fish survey planning. -- A Multi-Objective Competitive Co-Evolutionary Framework with Progressive Shrinking for Wargame Scenarios. -- -- Impact of Environmental Changes on Optimized Robotics Collective Motion for Multi-Objective Coverage Tasks.
Record Nr. UNINA-9910984694803321
Singh Hemant  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Evolutionary Multi-Criterion Optimization : 13th International Conference, EMO 2025, Canberra, ACT, Australia, March 4–7, 2025, Proceedings, Part II / / edited by Hemant Singh, Tapabrata Ray, Joshua Knowles, Xiaodong Li, Juergen Branke, Bing Wang, Akira Oyama
Evolutionary Multi-Criterion Optimization : 13th International Conference, EMO 2025, Canberra, ACT, Australia, March 4–7, 2025, Proceedings, Part II / / edited by Hemant Singh, Tapabrata Ray, Joshua Knowles, Xiaodong Li, Juergen Branke, Bing Wang, Akira Oyama
Autore Singh Hemant
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (397 pages)
Disciplina 006.3
Altri autori (Persone) RayTapabrata
KnowlesJoshua
LiXiaodong
BrankeJuergen
WangBing
OyamaAkira
Collana Lecture Notes in Computer Science
Soggetto topico Artificial intelligence
Artificial Intelligence
ISBN 9789819635382
9819635381
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Algorithm analysis. -- Visual Explanations of Some Problematic Search Behaviors of Frequently Used EMO Algorithms. -- Numerical Analysis of Pareto Set Modeling. -- When Is Non-deteriorating Population Update in MOEAs Beneficial?. -- Analysis of Merge Non-dominated Sorting Algorithm. -- Comparative Analysis of Indicators for Multi-objective Diversity Optimization. -- Performance Analysis of Constrained Evolutionary Multi-Objective Optimization Algorithms on Artificial and Real-World Problems. -- On the Approximation of the Entire Pareto Front of a Constrained Multi objective Optimization Problem. -- Small Population Size is Enough in Many Cases with External Archives. -- Surrogates and machine learning. -- Knowledge Gradient for Multi-Objective Bayesian Optimization with Decoupled Evaluations. -- Surrogate Strategies for Scalarisation-based Multi-objective Bayesian Optimizers. -- A Mixed-Fidelity Evaluation Algorithm for Efficient Constrained Multi- and Many-Objective Optimization: First Results. -- Efficient and Accurate Surrogate-Assisted Approach to Multi-Objective Optimization Using Deep Neural Networks. -- Large Language Model for Multiobjective Evolutionary Optimization. -- Multi-Objective Multi-Agent Reinforcement Learning for Autonomous Driving in Mixed-Traffic Environments. -- Parallel TD3 for Policy Gradient-based Multi-Condition Multi-Objective Optimisation. -- Multi-criteria decision support. -- Reliability-based MCDM Using Objective Preferences Under Variable Uncertainty. -- An Efficient Iterative Approach for Uniformly Representing Pareto Fronts. -- Preference Learning for Multi-objective Reinforcement Learning by Means of Supervised Learning. -- Bayesian preference elicitation for decision support in multi-objective optimization.
Record Nr. UNISA-996647866403316
Singh Hemant  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Evolutionary Multi-Criterion Optimization : 13th International Conference, EMO 2025, Canberra, ACT, Australia, March 4–7, 2025, Proceedings, Part I / / edited by Hemant Singh, Tapabrata Ray, Joshua Knowles, Xiaodong Li, Juergen Branke, Bing Wang, Akira Oyama
Evolutionary Multi-Criterion Optimization : 13th International Conference, EMO 2025, Canberra, ACT, Australia, March 4–7, 2025, Proceedings, Part I / / edited by Hemant Singh, Tapabrata Ray, Joshua Knowles, Xiaodong Li, Juergen Branke, Bing Wang, Akira Oyama
Autore Singh Hemant
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (498 pages)
Disciplina 006.3
Altri autori (Persone) RayTapabrata
KnowlesJoshua
LiXiaodong
BrankeJuergen
WangBing
OyamaAkira
Collana Lecture Notes in Computer Science
Soggetto topico Artificial intelligence
Artificial Intelligence
ISBN 9789819635061
9819635063
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Algorithm design. -- Towards an Efficient Innovation Path Seeking Algorithm Using Directed Domination. -- An MaOEA/Local Search Hybrid Based on a Fast, Stochastic BFGS Using Achievement Scalarizing Search Directions. -- Selective evaluations for expediting multi-objective bilevel optimization. -- MOAISDX: A New Multi-objective Artificial Immune System based on Decomposition. -- PAES-25: Local Search, Archiving and Multi/Many-objective PseudoBoolean Functions. -- Weights-Guided Random Bit Climber for Binary Many-objective Optimization. -- Bilevel Optimization-based Decomposition for Solving Single and Multi objective Optimization Problems. -- A Study on Optimistic & Pessimistic Pareto-fronts in Multi objective Bilevel Optimization via ?-Perturbation. -- Cumulative Step Size Adaptation for Adaptive SEMO in Integer Space. -- Adaptive Normal-Boundary Intersection Directions for Evolutionary Many objective Optimization with Complex Pareto Fronts. -- Encodings for Multi-Objective Free-Form Coverage Path Planning. -- VBEA: Voting-Based Evolutionary Algorithm for Multi-Objective Planning. -- Enhancing NSGA-II with a Knee Point for Constrained Multi-objective Optimization. -- Benchmarking. -- Single and Multi-Objective Optimization Benchmark Problems Focusing on Human-Powered Aircraft Design. -- An Extension of the Welded Beam Problem that Includes Multiple Interactng Design Concepts. -- Extended Results on Analytical Hypervolume Indicator Calculation of Linear and Quadratic Pareto Fronts. -- MO-IOHinspector: Anytime Benchmarking of Multi-Objective Algorithms using IOH profiler. -- Applications. -- Multi-Objective Sequential Decision Making for Holistic Supply Chain Optimization. -- Interactive evolutionary re optimization for ground fish survey planning. -- A Multi-Objective Competitive Co-Evolutionary Framework with Progressive Shrinking for Wargame Scenarios. -- -- Impact of Environmental Changes on Optimized Robotics Collective Motion for Multi-Objective Coverage Tasks.
Record Nr. UNISA-996647866603316
Singh Hemant  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui