top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Compendia of World's Medicinal Flora / / Singh, Amritpal
Compendia of World's Medicinal Flora / / Singh, Amritpal
Autore Singh Amritpal
Pubbl/distr/stampa [Place of publication not identified], : CRC Press Inc, 2016
Descrizione fisica 1 online resource (358 p.)
Disciplina 615/.321
Altri autori (Persone) Singh
Soggetto topico Materia medica, Vegetable
Medicinal plants
ISBN 0-429-06350-4
1-281-82765-7
9786611827656
1-4398-4301-5
1-57808-598-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front cover; Preface; Contents; Part A:; Chapter 1: Introduction to Herbal Medicine; Chapter 2: Herbal Pharmacy; Chapter 3: Phytochemicals; Part B; Chapter 1: Medicinal Algae; Chapter 2: Medicinal Fungi; Chapter 3: Medicinal Lichens; Chapter 4: Medicinal Bryophytes; Chapter 5: Medicinal Pteridophytes; Chapter 6: Medicinal Gymnosperms; Chapter 7: Medicinal Angiosperms; FURTHER READING; Taxonomic Index; Subject Index; Back cover
Record Nr. UNINA-9910782304303321
Singh Amritpal  
[Place of publication not identified], : CRC Press Inc, 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Compendia of World's Medicinal Flora / / Singh, Amritpal
Compendia of World's Medicinal Flora / / Singh, Amritpal
Autore Singh Amritpal
Pubbl/distr/stampa [Place of publication not identified], : CRC Press Inc, 2016
Descrizione fisica 1 online resource (358 p.)
Disciplina 615/.321
Altri autori (Persone) Singh
Soggetto topico Materia medica, Vegetable
Medicinal plants
ISBN 0-429-06350-4
1-281-82765-7
9786611827656
1-4398-4301-5
1-57808-598-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front cover; Preface; Contents; Part A:; Chapter 1: Introduction to Herbal Medicine; Chapter 2: Herbal Pharmacy; Chapter 3: Phytochemicals; Part B; Chapter 1: Medicinal Algae; Chapter 2: Medicinal Fungi; Chapter 3: Medicinal Lichens; Chapter 4: Medicinal Bryophytes; Chapter 5: Medicinal Pteridophytes; Chapter 6: Medicinal Gymnosperms; Chapter 7: Medicinal Angiosperms; FURTHER READING; Taxonomic Index; Subject Index; Back cover
Record Nr. UNINA-9910799946203321
Singh Amritpal  
[Place of publication not identified], : CRC Press Inc, 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Emerging Trends and Techniques in Biofuel Production from Agricultural Waste
Emerging Trends and Techniques in Biofuel Production from Agricultural Waste
Autore Singh Pardeep
Edizione [1st ed.]
Pubbl/distr/stampa Singapore : , : Springer, , 2024
Descrizione fisica 1 online resource (310 pages)
Altri autori (Persone) Singh
Collana Clean Energy Production Technologies Series
ISBN 981-9982-44-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Editor and Contributors -- About the Editor -- Contributors -- Chapter 1: Biofuel Production from Agricultural Waste: A Global Trend -- 1.1 Introduction -- 1.2 Synthesis of Biofuels -- 1.3 Types of Biofuels -- 1.4 Major Biofuels -- 1.4.1 Bioethanol -- 1.4.2 Biodiesel -- 1.4.3 Biobutanol -- 1.4.4 Biohydrogen -- 1.4.5 Bio-Oils -- 1.5 Status of Biofuels All over the Globe -- 1.5.1 Benefits -- 1.6 Conclusion and Future Prospects -- References -- Chapter 2: Agricultural Waste in Circular Economy: An Indian Scenario -- 2.1 Introduction -- 2.2 Circular Economy in Agriculture -- 2.2.1 Close Input and Flow of Nutrients in a Loop -- 2.2.2 Valorization of Agricultural Waste -- 2.3 Effective Management of Agricultural Waste -- 2.3.1 Energy Source -- 2.3.2 Biomaterials -- 2.3.3 Additives -- 2.3.4 Soil Amendments -- 2.4 Agricultural Waste Management Challenges and Risk -- 2.5 Adoption of Circular Economy in India -- 2.6 Conclusion -- References -- Chapter 3: Application of Methano Bacteria for Production of Biogas -- 3.1 Introduction -- 3.2 Methanobacteria for the Production of Biogas -- 3.2.1 Hydrolysis Process -- 3.2.2 Acidogenesis Process -- 3.2.3 Acetogenesis -- 3.2.4 Methanogenesis -- 3.3 Factors Affect Biogas Production -- 3.4 Advantages of Biogas -- 3.5 Disadvantages -- 3.6 Application of Biogas -- 3.7 Conclusion -- References -- Chapter 4: Microbial Advancements in Dark Fermentative Biohydrogen Production: Applications and Innovations -- 4.1 Introduction -- 4.2 Hydrogen-Producing Microorganisms -- 4.3 Fermentative Hydrogen Production -- 4.4 Microbial Applications in Fermentative Hydrogen Production -- 4.5 Conclusion -- References -- Chapter 5: Biohydrogen Production from Various Feedstocks: Biohydrogen Generation from Biomass -- 5.1 Introduction -- 5.2 Biofuels -- 5.2.1 Conventional Biofuels -- 5.2.2 Advanced Biofuels.
5.2.2.1 Second Generation Biofuels -- 5.2.2.2 Third Generation Biofuels -- 5.2.2.3 Fourth Generation Biofuels -- 5.2.2.4 Future Feedstocks -- 5.2.3 Direct Photolysis -- 5.2.4 Indirect Photolysis -- 5.2.5 Photofermentation -- 5.2.6 Dark Fermentation -- 5.3 H2-Synthesizing Enzymes -- 5.3.1 Nitrogenase -- 5.3.2 Hydrogenase -- 5.4 Factors Affecting Production of Biohydrogen -- 5.4.1 Composition of Substrates -- 5.4.1.1 Carbohydrates -- 5.4.1.2 Lipids -- 5.4.1.3 Proteins -- 5.4.2 Temperature -- 5.4.3 Enzymes -- 5.4.4 Partial Pressure of H2 -- 5.4.5 Pretreatment of the Substrates -- 5.4.6 Physicochemical Pretreatment -- 5.4.7 Chemical Pretreatment -- 5.4.8 Biological Pretreatment -- 5.4.9 Physical Pretreatment -- 5.4.9.1 Mechanism to Enhance Bio-H2 Generation Efficiency -- 5.4.9.2 Advantages -- 5.5 Conclusion and Future Perspectives -- References -- Chapter 6: Biohydrogen from Agricultural Waste -- 6.1 Biological Hydrogen Production -- 6.1.1 BioH2 via Dark Fermentation -- 6.2 Agricultural Waste and Biohydrogen Production -- 6.2.1 Pretreatment Methods for Agricultural Waste -- 6.3 Factors Affecting Dark Fermentation of Agricultural Waste -- References -- Chapter 7: Biomethane Production as an Alternative for the Valorization of Agricultural Residues: A Review on Main Substrates Used as Renewable Energy Sources -- 7.1 Introduction -- 7.2 Anaerobic Digestion Phases -- 7.3 Biomethane Production from Agricultural Wastes -- 7.4 Substrate Pre-treatment -- 7.5 Conclusions -- References -- Chapter 8: Biofuel Production from Agricultural Residue: An Effective and Sustainable Approach for Management of Agro-waste -- 8.1 Introduction -- 8.2 Agro-waste for Biofuel Production -- 8.3 Types of Biofuels -- 8.3.1 Biodiesel -- 8.3.2 Bioethanol -- 8.3.3 Biomethanol -- 8.3.4 Biogas -- 8.4 Technological Advancement to Improve Biofuel Production.
8.4.1 Direct Interspecies Electron Transfer (DIET) -- 8.4.2 Synthetic Biology Aided Production of Biofuel from Agro-waste -- 8.5 Conclusion and Future Prospects -- References -- Chapter 9: Production and Characterization of Bio-alcohols from Agricultural Wastes -- 9.1 Introduction -- 9.1.1 Sources of Agricultural Wastes and Worldwide Production -- 9.1.2 Classification of Agricultural Wastes -- 9.1.3 Composition of Agricultural Wastes -- 9.1.4 Biofuels from Agricultural Wastes -- 9.2 Ethanol from Agricultural Waste -- 9.2.1 Raw Materials -- 9.2.2 Pre-treatment -- 9.2.2.1 Physical Pre-treatment -- 9.2.2.2 Physiochemical Pre-treatment -- 9.2.2.3 Chemical Pre-treatment -- 9.2.2.4 Biological Pre-treatment -- 9.2.3 Hydrolysis -- 9.2.4 Fermentation -- 9.2.5 Factors Affecting Bioethanol Production -- 9.2.6 Nanotechnology in Bioethanol Production -- 9.3 Biobutanol from Agricultural Wastes -- 9.3.1 Pre-treatment -- 9.3.2 Hydrolysis -- 9.3.3 Fermentation -- 9.3.4 Solvent Separation -- 9.3.5 Strain Improvement -- 9.4 Bio-isopropanol from Agricultural Waste -- 9.5 Bio-methanol from Agricultural Waste -- 9.6 Bio-alcohols as a Fuel Blend -- 9.7 Conclusion and Future Prospect -- References -- Chapter 10: Technological Advancement for Biohydrogen Production from Agricultural Waste -- 10.1 Introduction -- 10.2 Lignocellulosic Content of Different Agricultural Wastes -- 10.3 Biohydrogen (Bio-H2) Generation Pathways from Agricultural Wastes -- 10.3.1 H2 Production by Photofermentation -- 10.3.2 H2 Production by Dark Fermentation (DF) -- 10.3.3 H2 Production by Microbial Electrolysis Cell (MEC) -- 10.4 Enhancement of Biohydrogen Production -- 10.4.1 Pre-treatment -- 10.4.1.1 Physical Pre-treatment -- 10.4.1.2 Chemical Pre-treatment -- 10.4.1.3 Biological Pre-treatment -- 10.4.2 Use of Nanoparticles and Metal Monomers to Enhance the Yield of Biohydrogen.
10.4.3 Enhancement in the Production of Biohydrogen Through Biotechnological Approach -- 10.4.3.1 Genetic and Metabolic Engineering Approach -- 10.4.3.2 Eco-biotechnological Approach -- 10.4.3.3 Bioaugmentation and Co-culture Approach -- 10.4.4 Reactor Design -- 10.4.5 Hybridization -- 10.4.6 Others -- 10.5 Challenges and Future Perspectives -- 10.6 Conclusion -- References -- Chapter 11: Recycling of Agricultural Waste for Biohydrogen Production -- 11.1 Introduction -- 11.2 Biohydrogen: Supply, Demand, and Outlook -- 11.3 Agro-waste-to-Biohydrogen Production: Waste to Energy -- 11.4 Biohydrogen Production Pathways -- 11.4.1 Thermochemical Process -- 11.4.2 Biological Route -- 11.5 Potential Feedstock for Biohydrogen Production -- 11.5.1 Pretreatment of Feedstock -- 11.6 Factors Affecting the Production Yield -- 11.6.1 Substrates -- 11.6.2 Light -- 11.6.3 pH Conditions -- 11.6.4 Process Temperature -- 11.6.5 Hydrogen Partial Pressure -- 11.7 Waste-to-Hydrogen Energy Production: Challenges and Future Scope -- 11.7.1 Biophotolysis -- 11.7.2 Photofermentation -- 11.7.3 Dark Fermentation -- 11.7.4 Similarly, Different Challenges Faced in Its Production Are as Follows -- 11.7.5 Other Issues Related to Utilizing Hydrogen as Fuel in Transport Are as Follows -- 11.8 Conclusion -- References -- Chapter 12: Parameters Responsible for Biomass Energy Production -- 12.1 Introduction -- 12.2 Literature Survey -- 12.3 Parameter Responsible for Biomass Energy Production -- 12.3.1 Biomass Types and Utilisation -- 12.3.1.1 Production of Biomass in the Survey Area: 2017 -- 12.3.1.2 Production of Biomass in the Entire Son River Watershed: 2017 -- 12.3.1.3 Use of Different Biomass Types in Household, Village, and Power Plants -- Biomass Uses as Cooking Fuel in Household Survey Area: 2017 (Table 12.4).
As Multiple Uses of Biomass in Villages and Others in Survey Area: 2017 -- Biomass Uses for Energy in Biomass Power Plant at Survey Area: 2017 -- Biomass Uses for Energy in Biomass Power Plant at Entire son River Watershed: 2017 -- 12.3.2 Biomass Yield -- 12.3.3 Biomass Power Plant Technologies -- 12.3.3.1 Gasifier and Co-Generation -- Downdraft Gasifier -- Co-Generation -- 12.3.4 Moisture and its Effect on the Gas Yield -- 12.3.5 Effect of Various Feed Materials on the Yield -- 12.3.6 Effect of Tar on the Yield -- 12.3.7 The Temperature of the Yield -- 12.3.8 Rate of Flow of Gas -- 12.3.9 Calibration of Flow Meters -- 12.3.10 Environmental Impact -- 12.3.11 Sustainability -- 12.4 Conclusion -- References -- Chapter 13: Government Initiative and Policy for Agricultural Waste Utilization as Biofuel -- 13.1 Introduction -- 13.2 Global Scenarios -- 13.3 Role of Government in Promoting Agricultural Waste Utilization as Biofuel -- 13.3.1 Legal and Regulatory Frameworks -- 13.3.2 Investment Incentives -- 13.3.3 Public-Private Partnerships -- 13.3.4 Research and Development -- 13.3.5 Education and Outreach -- 13.4 Regulatory Framework for Agricultural Waste Utilization as Biofuel -- 13.4.1 Mandates -- 13.4.2 Tax Incentives -- 13.4.3 Renewable Fuel Standards -- 13.4.4 Research and Development -- 13.4.5 Certification and Labeling -- 13.5 Funding and Incentives for Agricultural Waste Utilization as Biofuel -- 13.5.1 Investment Incentives -- 13.5.2 Subsidies -- 13.5.3 Renewable Fuel Standards -- 13.5.4 Public-Private Partnerships -- 13.5.5 Research and Development -- 13.6 Challenges in Implementing Government Policies for Agricultural Waste Utilization as Biofuel -- 13.6.1 Technological Challenges -- 13.6.2 Economic Challenges -- 13.6.3 Social Challenges -- 13.6.4 Policy Challenges -- 13.6.5 Infrastructure Challenges.
13.7 Technological Advancements, Future Prospects, and Opportunities for Agricultural Waste Utilization as Biofuel.
Record Nr. UNINA-9910841873203321
Singh Pardeep  
Singapore : , : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Genetic Testing in Reproductive Medicine
Genetic Testing in Reproductive Medicine
Autore Singh Rajender
Edizione [1st ed.]
Pubbl/distr/stampa Singapore : , : Springer, , 2024
Descrizione fisica 1 online resource (321 pages)
Disciplina 618.04075
Altri autori (Persone) Singh
ISBN 981-9970-28-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- Editor and Contributors -- 1: Genetic Testing in Disorders of Sexual Development -- 1.1 Introduction -- 1.2 Genetics of Sexual Differentiation and Development -- 1.3 Disorders of Sexual Development -- 1.3.1 Sex Chromosome DSD -- 1.3.2 46,XY DSD -- 1.3.3 46,XX DSD -- 1.3.4 Other Forms of DSDs -- 1.4 Genetic Testing in DSDs -- 1.4.1 Cytogenetic Analysis -- 1.4.2 SNP Arrays, Comparative Genomic Hybridization, and Next-Generation Sequencing -- 1.4.3 Fertility Potential and Counseling/Treatment Options -- 1.5 Conclusions and Future Perspective -- References -- 2: Y-Chromosome Deletion Testing in Infertility -- 2.1 Introduction -- 2.2 Y-Chromosome Microdeletions -- 2.2.1 Classical Deletions -- 2.2.2 Partial Deletions -- 2.3 Why Screen for Y-Deletions? -- 2.3.1 The European Academy of Andrology (EAA) and the European Molecular Genetics Quality Network (EMQN) Recommend Y-Deletion ... -- 2.3.2 Y-Deletion Screening Helps in Selecting the Method of Treatment -- 2.4 Methods for Screening Y-Deletions -- 2.5 Type of Sample for Y-Deletion Testing -- 2.6 Y-Deletion Testing Is Required for Offering Genetic Counselling -- 2.7 Conclusions and Future Perspective -- References -- 3: Genetic Testing in Male Infertility -- 3.1 Introduction -- 3.2 Various Types of Genetic Abnormalities -- 3.2.1 Numerical Chromosomal Abnormalities -- 3.2.2 Structural Chromosomal Abnormalities -- 3.2.3 Single-Nucleotide Polymorphisms -- 3.2.3.1 Androgen Receptor (AR) Gene -- 3.2.3.2 Follicle-Stimulating Hormone Receptor (FSHR) Gene -- 3.2.3.3 Glutathione S-Transferase (GST) Gene -- 3.2.3.4 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene Mutations Leading to CBAVD Risk -- 3.2.3.5 Methylenetetrahydrofolate Reductase (MTHFR) Gene -- 3.2.3.6 Deleted in Azoospermia-Like (DAZL) Gene -- 3.2.3.7 FAS/FASL Gene.
3.2.3.8 DNA Polymerase Subunit Gamma (POLG) Gene -- 3.2.3.9 Estrogen Receptor (ESR) and Male Infertility -- 3.3 Diagnostic Techniques -- 3.4 Conclusion and Future Perspectives -- References -- 4: Sperm DNA Fragmentation Testing in Infertility -- 4.1 Introduction -- 4.2 Significance of Sperm DNA Integrity in Male Fertility -- 4.3 Contemporary Sperm Chromatin Integrity Tests -- 4.3.1 Sperm Chromatin Maturation (CM) and Condensation Assessments -- 4.3.1.1 Staining with Toluidine Blue (TB) -- 4.3.1.2 Chromomycin A3 (CMA3) Assay -- 4.3.1.3 Aniline Blue Staining -- 4.3.2 Sperm DNA Fragmentation Index (DFI) Assessments -- 4.3.2.1 Terminal Deoxynucleotidyl Transferase dUTP Nick-End Labeling (TUNEL) Assay -- 4.3.2.2 Sperm Chromatin Dispersion (SCD) Test/Halosperm Assay -- 4.3.2.3 Sperm Chromatin Structure Assay (SCSA) -- 4.3.2.4 Comet Assay -- 4.3.2.5 Measurement of 8-Hydroxy-2-Deoxyguanosine (8-OHdG) -- 4.3.2.6 Acridine Orange Dye -- 4.4 Impediments in Sperm Chromatin Integrity Testing -- 4.4.1 Limiting Factors in Sperm Chromatin Integrity Testing -- 4.4.2 Disparity in Universal Predictive Value for Sperm DNA Fragmentation -- 4.5 Conclusions -- 4.6 Future Perspective -- References -- 5: Microbiome Testing in Male Infertility -- 5.1 Introduction -- 5.2 Testing of Semen Microbiota -- 5.3 Semen Microbiota, Infertility, and Assisted Reproduction -- 5.4 Therapeutic Approaches for Male Infertility -- 5.5 Conclusions and Future Perspective -- References -- 6: Genetic Testing in Polycystic Ovary Syndrome -- 6.1 Introduction -- 6.2 Inheritance of PCOS -- 6.3 Genetic Predisposition to PCOS -- 6.3.1 Candidate Gene Studies -- 6.3.1.1 CYP11A -- 6.3.1.2 CYP11B -- 6.3.1.3 CYP17 -- 6.3.1.4 CYP19 -- 6.3.1.5 CYP21 -- 6.3.1.6 AR -- 6.3.1.7 LHCGR -- 6.3.1.8 CAPN10 -- 6.3.1.9 IRS-1 -- 6.3.2 Genome-Wide Association Studies -- 6.3.2.1 GWAS 1 -- 6.3.2.2 GWAS 2 -- 6.3.2.3 GWAS 3.
6.3.2.4 GWAS 4 -- 6.3.2.5 GWAS 5 -- 6.3.2.6 GWAS 6 -- 6.3.2.7 GWAS 7 -- 6.3.2.8 GWAS 8 -- 6.4 Genetic Testing in PCOS in Clinical Settings -- 6.5 Conclusions and Future Perspective -- References -- 7: Genetic Testing in Premature Ovarian Failure -- 7.1 Introduction -- 7.2 Genetic Testing in POF -- 7.2.1 Karyotyping -- 7.2.2 Candidate Gene Sequencing -- 7.2.2.1 Oocyte-Specific Transcription Factors Genes -- 7.2.2.2 Folliculogenesis Growth Factor Genes -- 7.2.2.3 Ovarian Steroidogenesis Genes -- 7.2.3 Genome-Wide Association Studies (GWAS) -- 7.2.4 Next-Generation Sequencing (NGS) -- 7.2.5 Array Comparative Genomic Hybridization (Array CGH) -- 7.2.6 Microarray Analysis -- 7.3 Conclusions and Future Perspective -- References -- 8: Microbiome Testing in Female Infertility -- 8.1 Introduction -- 8.2 Female Genital Tract Microbiota -- 8.3 Dysbiosis: Milieu in Gynecological Diseases and Infertility -- 8.4 Gut Microbiome in Reproductive Health and Fertility -- 8.5 Classical Diagnostic Methods -- 8.6 PCR Techniques: Targeting Dysbiosis -- 8.7 Next-Generation Sequencing-Based Diagnosis -- 8.8 High-Throughput Metabolomics -- 8.9 Conclusions and Future Perspective -- References -- 9: Preimplantation Genetic Testing -- 9.1 Introduction -- 9.2 Indications for PGT -- 9.3 Embryo Sampling Techniques -- 9.3.1 Polar Body Biopsy -- 9.3.2 Cleavage Stage or Blastomere Biopsy -- 9.3.3 Blastocyst/Trophectoderm Biopsy -- 9.4 Factors Influencing PGT Results -- 9.5 Diagnostic Approaches to Evaluate Embryo Biopsies -- 9.6 Work Flow of PGT -- 9.7 Preimplantation Genetic Testing for Aneuploidies (PGT-A) -- 9.8 Incidence of Aneuploidy in Preimplantation Embryos -- 9.9 The Efficacy of PGT-A -- 9.10 Embryo Mosaicism -- 9.11 Transferring Mosaic Embryos in the Absence of Alternatives -- 9.12 Preimplantation Genetic Testing for Structural Rearrangements.
9.13 Preimplantation Genetic Testing for Monogenic Disorders (PGT-M) -- 9.14 Preimplantation HLA Typing -- 9.15 Noninvasive Preimplantation Genetic Testing (NiPGT) -- 9.16 Conclusions and Future Perspective -- References -- 10: Mitochondrial DNA Testing in Assisted Reproduction -- 10.1 Introduction -- 10.2 Mitochondrial Functions in Oocytes and Preimplantation Embryos -- 10.3 The mtDNA Content -- 10.4 Evidence Against the Utility of mtDNA Testing -- 10.5 Mitochondrial DNA Content in Fresh and Frozen Embryos -- 10.6 Mitochondrial DNA Content and Its Relation to Recurrent Implantation Failure (RIF) -- 10.7 Mitochondrial DNA Content and Its Relation to Recurrent Pregnancy Loss -- 10.8 Mitochondrial DNA Content and Its Relation to Embryo Fragmentation -- 10.9 Mitochondrial DNA Content and Its Relation to Ploidy Status -- 10.10 Mitochondria Transfer as a Tool for Improvement of Embryo Quality and Infertility Treatment -- 10.11 Mitochondrial DNA Content as a Biomarker of Implantation Potential -- 10.12 mtDNA Testing in Clinics -- 10.13 Conclusions and Future Perspective -- References -- 11: Genetic Testing for Endometrial Receptivity -- 11.1 Introduction -- 11.2 Endometrial Receptivity: The Unsung Hero -- 11.3 Metabolic and Immunological Determinants of Endometrial Receptivity -- 11.4 Molecular Signaling in Endometrial Receptivity -- 11.5 Gene Expression Alterations in Endometrial Receptivity -- 11.6 miRNAs: Important Players in Endometrial Receptivity -- 11.7 Classical Methods of Evaluating Endometrial Receptivity -- 11.8 Gene Expression Profiling -- 11.9 Metagenomics as an Emerging Tool in Endometrial Receptivity -- 11.10 Conclusions and Future Perspective -- References -- 12: Prenatal Genetic Testing -- 12.1 Introduction -- 12.2 Prenatal Screening Tests -- 12.2.1 Noninvasive Prenatal Screening (NIPS).
12.2.2 Prenatal Diagnostic Testing: Invasive Prenatal Diagnosis -- 12.2.2.1 Indications for Invasive Prenatal Testing -- 12.2.2.2 Chorionic Villus Sampling -- 12.2.2.3 Amniocentesis -- 12.2.2.4 Diagnostic Approaches in Invasive Prenatal Testing -- 12.2.2.4.1 Rapid Aneuploidy Testing -- 12.2.2.4.2 Fluorescent In Situ Hybridization (FISH) -- 12.2.2.4.3 Quantitative Fluorescence-Polymerase Chain Reaction (QF-PCR) -- 12.2.2.4.4 Conventional Karyotyping -- 12.2.2.4.5 Chromosomal Microarray -- 12.2.2.4.5.1 Recommendations for the Use of CMA -- 12.3 Next-Generation Sequencing (NGS) -- 12.4 Conclusion and Future Perspective -- References -- 13: Genetic Testing in Recurrent Pregnancy Loss -- 13.1 Introduction -- 13.2 Genetic Analysis of the Product of Conception (POC) -- 13.2.1 Fluorescence In Situ Hybridization (FISH) -- 13.2.2 Array Comparative Genomic Hybridization (aCGH) -- 13.2.3 NGS Approach -- 13.2.4 Maternal Plasma Cell Free Fetal (Cff) DNA Testing -- 13.3 Parental Genetic Analysis -- 13.3.1 Peripheral Blood Karyotyping -- 13.3.2 Single Gene Defects -- 13.4 Genetic Testing as a Diagnostic Tool and Therapy in RPL -- 13.5 Conclusions and Future Perspective -- References -- 14: Genetic Testing in Pregnancy to Assess the Risk of Preterm Birth -- 14.1 Introduction -- 14.2 Familial and Obstetric Histories Suggest Genetic Risk Factors -- 14.3 Genetics of PTB Risk -- 14.3.1 Racial/Ethnic Divergence and Genetic Predisposition -- 14.3.2 Role of Genetic Variations in PTB Risk -- 14.3.3 Epigenetic Factors -- 14.3.4 Vaginal Microbiome and PTB Risk -- 14.4 Genetic Testing in Pregnancy for PTB Risk -- 14.5 Conclusions and Future Perspective -- References -- 15: Reproductive Carrier Screening -- 15.1 Introduction -- 15.2 Premarital/Preconception Screening -- 15.3 Hemoglobinopathies -- 15.4 Fragile X Syndrome (FXS) -- 15.5 Cystic Fibrosis.
15.6 Spinal Muscular Atrophy.
Record Nr. UNINA-9910842286703321
Singh Rajender  
Singapore : , : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Motion Analysis of Biological Systems : Advanced Theoretical and Computational Concepts
Motion Analysis of Biological Systems : Advanced Theoretical and Computational Concepts
Autore Singh Rajat Emanuel
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2024
Descrizione fisica 1 online resource (191 pages)
Altri autori (Persone) Singh
ISBN 9783031529771
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910855371003321
Singh Rajat Emanuel  
Cham : , : Springer International Publishing AG, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Porteur De Pierres: Prabowo, Une Histoire De l'Indonesie Moderne
Porteur De Pierres: Prabowo, Une Histoire De l'Indonesie Moderne
Autore Singh
Pubbl/distr/stampa Editions L'Harmattan
Descrizione fisica 1 online resource (250 p.)
ISBN 2-336-76690-6
2-14-001454-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione fre
Record Nr. UNINA-9910150280703321
Singh  
Editions L'Harmattan
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Thake Svers. / by Singh
Thake Svers. / by Singh
Autore Singh
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-990002773130403321
Singh  
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui