Evolutionary optimization algorithms [[electronic resource] ] : biologically-Inspired and population-based approaches to computer intelligence / / Dan Simon |
Autore | Simon Dan <1960-> |
Pubbl/distr/stampa | Hoboken, NJ, : John Wiley & Sons Inc., 2013 |
Descrizione fisica | 1 online resource (776 p.) |
Disciplina | 006.3 |
Soggetto topico |
Evolutionary computation
Computer algorithms Biologically-inspired computing |
Soggetto genere / forma | Electronic books. |
ISBN |
1-118-65956-2
1-118-65950-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title Page; Copyright Page; SHORT TABLE OF CONTENTS; DETAILED TABLE OF CONTENTS; Acknowledgments; Acronyms; List of Algorithms; PART I INTRODUCTION TO EVOLUTIONARY OPTIMIZATION; 1 Introduction; 1.1 Terminology; 1.2 Why Another Book on Evolutionary Algorithms?; 1.3 Prerequisites; 1.4 Homework Problems; 1.5 Notation; 1.6 Outline of the Book; 1.7 A Course Based on This Book; 2 Optimization; 2.1 Unconstrained Optimization; 2.2 Constrained Optimization; 2.3 Multi-Objective Optimization; 2.4 Multimodal Optimization; 2.5 Combinatorial Optimization; 2.6 Hill Climbing
2.6.1 Biased Optimization Algorithms2.6.2 The Importance of Monte Carlo Simulations; 2.7 Intelligence; 2.7.1 Adaptation; 2.7.2 Randomness; 2.7.3 Communication; 2.7.4 Feedback; 2.7.5 Exploration and Exploitation; 2.8 Conclusion; Problems; PART II CLASSIC EVOLUTIONARY ALGORITHMS; 3 Genetic Algorithms; 3.1 The History of Genetics; 3.1.1 Charles Darwin; 3.1.2 Gregor Mendel; 3.2 The Science of Genetics; 3.3 The History of Genetic Algorithms; 3.4 A Simple Binary Genetic Algorithm; 3.4.1 A Genetic Algorithm for Robot Design; 3.4.2 Selection and Crossover; 3.4.3 Mutation; 3.4.4 GA Summary 3.4.5 GA Tuning Parameters and Examples3.5 A Simple Continuous Genetic Algorithm; 3.6 Conclusion; Problems; 4 Mathematical Models of Genetic Algorithms; 4.1 Schema Theory; 4.2 Markov Chains; 4.3 Markov Model Notation for Evolutionary Algorithms; 4.4 Markov Models of Genetic Algorithms; 4.4.1 Selection; 4.4.2 Mutation; 4.4.3 Crossover; 4.5 Dynamic System Models of Genetic Algorithms; 4.5.1 Selection; 4.5.2 Mutation; 4.5.3 Crossover; 4.6 Conclusion; Problems; 5 Evolutionary Programming; 5.1 Continuous Evolutionary Programming; 5.2 Finite State Machine Optimization 5.3 Discrete Evolutionary Programming5.4 The Prisoner's Dilemma; 5.5 The Artificial Ant Problem; 5.6 Conclusion; Problems; 6 Evolution Strategies; 6.1 The (1+1) Evolution Strategy; 6.2 The 1/5 Rule: A Derivation; 6.3 The (μ+l) Evolution Strategy; 6.4 (μ + λ) and (μ, λ) Evolution Strategies; 6.5 Self-Adaptive Evolution Strategies; 6.6 Conclusion; Problems; 7 Genetic Programming; 7.1 Lisp: The Language of Genetic Programming; 7.2 The Fundamentals of Genetic Programming; 7.2.1 Fitness Measure; 7.2.2 Termination Criteria; 7.2.3 Terminal Set; 7.2.4 Function Set; 7.2.5 Initialization 7.2.6 Genetic Programming Parameters7.3 Genetic Programming for Minimum Time Control; 7.4 Genetic Programming Bloat; 7.5 Evolving Entities other than Computer Programs; 7.6 Mathematical Analysis of Genetic Programming; 7.6.1 Definitions and Notation; 7.6.2 Selection and Crossover; 7.6.3 Mutation and Final Results; 7.7 Conclusion; Problems; 8 Evolutionary Algorithm Variations; 8.1 Initialization; 8.2 Convergence Criteria; 8.3 Problem Representation Using Gray Coding; 8.4 Elitism; 8.5 Steady-State and Generational Algorithms; 8.6 Population Diversity; 8.6.1 Duplicate Individuals 8.6.2 Niche-Based and Species-Based Recombination |
Record Nr. | UNINA-9910463449903321 |
Simon Dan <1960-> | ||
Hoboken, NJ, : John Wiley & Sons Inc., 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Evolutionary optimization algorithms [[electronic resource] ] : biologically-Inspired and population-based approaches to computer intelligence / / Dan Simon |
Autore | Simon Dan <1960-> |
Pubbl/distr/stampa | Hoboken, NJ, : John Wiley & Sons Inc., 2013 |
Descrizione fisica | 1 online resource (776 p.) |
Disciplina | 006.3 |
Soggetto topico |
Evolutionary computation
Computer algorithms Biologically-inspired computing |
ISBN |
1-118-65956-2
1-118-65950-3 |
Classificazione | MAT008000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title Page; Copyright Page; SHORT TABLE OF CONTENTS; DETAILED TABLE OF CONTENTS; Acknowledgments; Acronyms; List of Algorithms; PART I INTRODUCTION TO EVOLUTIONARY OPTIMIZATION; 1 Introduction; 1.1 Terminology; 1.2 Why Another Book on Evolutionary Algorithms?; 1.3 Prerequisites; 1.4 Homework Problems; 1.5 Notation; 1.6 Outline of the Book; 1.7 A Course Based on This Book; 2 Optimization; 2.1 Unconstrained Optimization; 2.2 Constrained Optimization; 2.3 Multi-Objective Optimization; 2.4 Multimodal Optimization; 2.5 Combinatorial Optimization; 2.6 Hill Climbing
2.6.1 Biased Optimization Algorithms2.6.2 The Importance of Monte Carlo Simulations; 2.7 Intelligence; 2.7.1 Adaptation; 2.7.2 Randomness; 2.7.3 Communication; 2.7.4 Feedback; 2.7.5 Exploration and Exploitation; 2.8 Conclusion; Problems; PART II CLASSIC EVOLUTIONARY ALGORITHMS; 3 Genetic Algorithms; 3.1 The History of Genetics; 3.1.1 Charles Darwin; 3.1.2 Gregor Mendel; 3.2 The Science of Genetics; 3.3 The History of Genetic Algorithms; 3.4 A Simple Binary Genetic Algorithm; 3.4.1 A Genetic Algorithm for Robot Design; 3.4.2 Selection and Crossover; 3.4.3 Mutation; 3.4.4 GA Summary 3.4.5 GA Tuning Parameters and Examples3.5 A Simple Continuous Genetic Algorithm; 3.6 Conclusion; Problems; 4 Mathematical Models of Genetic Algorithms; 4.1 Schema Theory; 4.2 Markov Chains; 4.3 Markov Model Notation for Evolutionary Algorithms; 4.4 Markov Models of Genetic Algorithms; 4.4.1 Selection; 4.4.2 Mutation; 4.4.3 Crossover; 4.5 Dynamic System Models of Genetic Algorithms; 4.5.1 Selection; 4.5.2 Mutation; 4.5.3 Crossover; 4.6 Conclusion; Problems; 5 Evolutionary Programming; 5.1 Continuous Evolutionary Programming; 5.2 Finite State Machine Optimization 5.3 Discrete Evolutionary Programming5.4 The Prisoner's Dilemma; 5.5 The Artificial Ant Problem; 5.6 Conclusion; Problems; 6 Evolution Strategies; 6.1 The (1+1) Evolution Strategy; 6.2 The 1/5 Rule: A Derivation; 6.3 The (μ+l) Evolution Strategy; 6.4 (μ + λ) and (μ, λ) Evolution Strategies; 6.5 Self-Adaptive Evolution Strategies; 6.6 Conclusion; Problems; 7 Genetic Programming; 7.1 Lisp: The Language of Genetic Programming; 7.2 The Fundamentals of Genetic Programming; 7.2.1 Fitness Measure; 7.2.2 Termination Criteria; 7.2.3 Terminal Set; 7.2.4 Function Set; 7.2.5 Initialization 7.2.6 Genetic Programming Parameters7.3 Genetic Programming for Minimum Time Control; 7.4 Genetic Programming Bloat; 7.5 Evolving Entities other than Computer Programs; 7.6 Mathematical Analysis of Genetic Programming; 7.6.1 Definitions and Notation; 7.6.2 Selection and Crossover; 7.6.3 Mutation and Final Results; 7.7 Conclusion; Problems; 8 Evolutionary Algorithm Variations; 8.1 Initialization; 8.2 Convergence Criteria; 8.3 Problem Representation Using Gray Coding; 8.4 Elitism; 8.5 Steady-State and Generational Algorithms; 8.6 Population Diversity; 8.6.1 Duplicate Individuals 8.6.2 Niche-Based and Species-Based Recombination |
Record Nr. | UNINA-9910786845303321 |
Simon Dan <1960-> | ||
Hoboken, NJ, : John Wiley & Sons Inc., 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Evolutionary optimization algorithms : biologically-Inspired and population-based approaches to computer intelligence / / Dan Simon |
Autore | Simon Dan <1960-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, NJ, : John Wiley & Sons Inc., 2013 |
Descrizione fisica | 1 online resource (776 p.) |
Disciplina | 006.3 |
Soggetto topico |
Evolutionary computation
Computer algorithms Biologically-inspired computing |
ISBN |
1-118-65956-2
1-118-65950-3 |
Classificazione | MAT008000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title Page; Copyright Page; SHORT TABLE OF CONTENTS; DETAILED TABLE OF CONTENTS; Acknowledgments; Acronyms; List of Algorithms; PART I INTRODUCTION TO EVOLUTIONARY OPTIMIZATION; 1 Introduction; 1.1 Terminology; 1.2 Why Another Book on Evolutionary Algorithms?; 1.3 Prerequisites; 1.4 Homework Problems; 1.5 Notation; 1.6 Outline of the Book; 1.7 A Course Based on This Book; 2 Optimization; 2.1 Unconstrained Optimization; 2.2 Constrained Optimization; 2.3 Multi-Objective Optimization; 2.4 Multimodal Optimization; 2.5 Combinatorial Optimization; 2.6 Hill Climbing
2.6.1 Biased Optimization Algorithms2.6.2 The Importance of Monte Carlo Simulations; 2.7 Intelligence; 2.7.1 Adaptation; 2.7.2 Randomness; 2.7.3 Communication; 2.7.4 Feedback; 2.7.5 Exploration and Exploitation; 2.8 Conclusion; Problems; PART II CLASSIC EVOLUTIONARY ALGORITHMS; 3 Genetic Algorithms; 3.1 The History of Genetics; 3.1.1 Charles Darwin; 3.1.2 Gregor Mendel; 3.2 The Science of Genetics; 3.3 The History of Genetic Algorithms; 3.4 A Simple Binary Genetic Algorithm; 3.4.1 A Genetic Algorithm for Robot Design; 3.4.2 Selection and Crossover; 3.4.3 Mutation; 3.4.4 GA Summary 3.4.5 GA Tuning Parameters and Examples3.5 A Simple Continuous Genetic Algorithm; 3.6 Conclusion; Problems; 4 Mathematical Models of Genetic Algorithms; 4.1 Schema Theory; 4.2 Markov Chains; 4.3 Markov Model Notation for Evolutionary Algorithms; 4.4 Markov Models of Genetic Algorithms; 4.4.1 Selection; 4.4.2 Mutation; 4.4.3 Crossover; 4.5 Dynamic System Models of Genetic Algorithms; 4.5.1 Selection; 4.5.2 Mutation; 4.5.3 Crossover; 4.6 Conclusion; Problems; 5 Evolutionary Programming; 5.1 Continuous Evolutionary Programming; 5.2 Finite State Machine Optimization 5.3 Discrete Evolutionary Programming5.4 The Prisoner's Dilemma; 5.5 The Artificial Ant Problem; 5.6 Conclusion; Problems; 6 Evolution Strategies; 6.1 The (1+1) Evolution Strategy; 6.2 The 1/5 Rule: A Derivation; 6.3 The (μ+l) Evolution Strategy; 6.4 (μ + λ) and (μ, λ) Evolution Strategies; 6.5 Self-Adaptive Evolution Strategies; 6.6 Conclusion; Problems; 7 Genetic Programming; 7.1 Lisp: The Language of Genetic Programming; 7.2 The Fundamentals of Genetic Programming; 7.2.1 Fitness Measure; 7.2.2 Termination Criteria; 7.2.3 Terminal Set; 7.2.4 Function Set; 7.2.5 Initialization 7.2.6 Genetic Programming Parameters7.3 Genetic Programming for Minimum Time Control; 7.4 Genetic Programming Bloat; 7.5 Evolving Entities other than Computer Programs; 7.6 Mathematical Analysis of Genetic Programming; 7.6.1 Definitions and Notation; 7.6.2 Selection and Crossover; 7.6.3 Mutation and Final Results; 7.7 Conclusion; Problems; 8 Evolutionary Algorithm Variations; 8.1 Initialization; 8.2 Convergence Criteria; 8.3 Problem Representation Using Gray Coding; 8.4 Elitism; 8.5 Steady-State and Generational Algorithms; 8.6 Population Diversity; 8.6.1 Duplicate Individuals 8.6.2 Niche-Based and Species-Based Recombination |
Record Nr. | UNINA-9910815748603321 |
Simon Dan <1960-> | ||
Hoboken, NJ, : John Wiley & Sons Inc., 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Optimal state estimation [[electronic resource] ] : Kalman, H [infinity] and nonlinear approaches / / Dan Simon |
Autore | Simon Dan <1960-> |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2006 |
Descrizione fisica | 1 online resource (554 p.) |
Disciplina |
519
629.8312 |
Soggetto topico |
Kalman filtering
Nonlinear systems Mathematical optimization |
ISBN |
1-280-50795-0
9786610507955 0-470-04534-5 1-61583-476-1 0-470-04533-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Optimal State Estimation; CONTENTS; Acknowledgments; Acronyms; List of algorithms; Introduction; PART I INTRODUCTORY MATERIAL; 1 Linear systems theory; 1.1 Matrix algebra and matrix calculus; 1.1.1 Matrix algebra; 1.1.2 The matrix inversion lemma; 1.1.3 Matrix calculus; 1.1.4 The history of matrices; 1.2 Linear systems; 1.3 Nonlinear systems; 1.4 Discretization; 1.5 Simulation; 1.5.1 Rectangular integration; 1.5.2 Trapezoidal integration; 1.5.3 Runge-Kutta integration; 1.6 Stability; 1.6.1 Continuous-time systems; 1.6.2 Discrete-time systems; 1.7 Controllability and observability
1.7.1 Controllability1.7.2 Observability; 1.7.3 Stabilizability and detectability; 1.8 Summary; Problems; 2 Probability theory; 2.1 Probability; 2.2 Random variables; 2.3 Transformations of random variables; 2.4 Multiple random variables; 2.4.1 Statistical independence; 2.4.2 Multivariate statistics; 2.5 Stochastic Processes; 2.6 White noise and colored noise; 2.7 Simulating correlated noise; 2.8 Summary; Problems; 3 Least squares estimation; 3.1 Estimation of a constant; 3.2 Weighted least squares estimation; 3.3 Recursive least squares estimation; 3.3.1 Alternate estimator forms 3.3.2 Curve fitting3.4 Wiener filtering; 3.4.1 Parametric filter optimization; 3.4.2 General filter optimization; 3.4.3 Noncausal filter optimization; 3.4.4 Causal filter optimization; 3.4.5 Comparison; 3.5 Summary; Problems; 4 Propagation of states and covariances; 4.1 Discrete-time systems; 4.2 Sampled-data systems; 4.3 Continuous-time systems; 4.4 Summary; Problems; PART II THE KALMAN FILTER; 5 The discrete-time Kalman filter; 5.1 Derivation of the discrete-time Kalman filter; 5.2 Kalman filter properties; 5.3 One-step Kalman filter equations; 5.4 Alternate propagation of covariance 5.4.1 Multiple state systems5.4.2 Scalar systems; 5.5 Divergence issues; 5.6 Summary; Problems; 6 Alternate Kalman filter formulations; 6.1 Sequential Kalman filtering; 6.2 Information filtering; 6.3 Square root filtering; 6.3.1 Condition number; 6.3.2 The square root time-update equation; 6.3.3 Potter's square root measurement-update equation; 6.3.4 Square root measurement update via triangularization; 6.3.5 Algorithms for orthogonal transformations; 6.4 U-D filtering; 6.4.1 U-D filtering: The measurement-update equation; 6.4.2 U-D filtering: The time-update equation; 6.5 Summary; Problems 7 Kalman filter generalizations7.1 Correlated process and measurement noise; 7.2 Colored process and measurement noise; 7.2.1 Colored process noise; 7.2.2 Colored measurement noise: State augmentation; 7.2.3 Colored measurement noise: Measurement differencing; 7.3 Steady-state filtering; 7.3.1 α-β filtering; 7.3.2 α-β-γ filtering; 7.3.3 A Hamiltonian approach to steady-state filtering; 7.4 Kalman filtering with fading memory; 7.5 Constrained Kalman filtering; 7.5.1 Model reduction; 7.5.2 Perfect measurements; 7.5.3 Projection approaches; 7.5.4 A pdf truncation approach; 7.6 Summary; Problems 8 The continuous-time Kalman filter |
Record Nr. | UNINA-9910143568103321 |
Simon Dan <1960-> | ||
Hoboken, N.J., : Wiley-Interscience, c2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Optimal state estimation : Kalman, H [infinity] and nonlinear approaches / / Dan Simon |
Autore | Simon Dan <1960-> |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2006 |
Descrizione fisica | 1 online resource (554 p.) |
Disciplina | 629.8/312 |
Soggetto topico |
Kalman filtering
Nonlinear systems Mathematical optimization |
ISBN |
1-280-50795-0
9786610507955 0-470-04534-5 1-61583-476-1 0-470-04533-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Optimal State Estimation; CONTENTS; Acknowledgments; Acronyms; List of algorithms; Introduction; PART I INTRODUCTORY MATERIAL; 1 Linear systems theory; 1.1 Matrix algebra and matrix calculus; 1.1.1 Matrix algebra; 1.1.2 The matrix inversion lemma; 1.1.3 Matrix calculus; 1.1.4 The history of matrices; 1.2 Linear systems; 1.3 Nonlinear systems; 1.4 Discretization; 1.5 Simulation; 1.5.1 Rectangular integration; 1.5.2 Trapezoidal integration; 1.5.3 Runge-Kutta integration; 1.6 Stability; 1.6.1 Continuous-time systems; 1.6.2 Discrete-time systems; 1.7 Controllability and observability
1.7.1 Controllability1.7.2 Observability; 1.7.3 Stabilizability and detectability; 1.8 Summary; Problems; 2 Probability theory; 2.1 Probability; 2.2 Random variables; 2.3 Transformations of random variables; 2.4 Multiple random variables; 2.4.1 Statistical independence; 2.4.2 Multivariate statistics; 2.5 Stochastic Processes; 2.6 White noise and colored noise; 2.7 Simulating correlated noise; 2.8 Summary; Problems; 3 Least squares estimation; 3.1 Estimation of a constant; 3.2 Weighted least squares estimation; 3.3 Recursive least squares estimation; 3.3.1 Alternate estimator forms 3.3.2 Curve fitting3.4 Wiener filtering; 3.4.1 Parametric filter optimization; 3.4.2 General filter optimization; 3.4.3 Noncausal filter optimization; 3.4.4 Causal filter optimization; 3.4.5 Comparison; 3.5 Summary; Problems; 4 Propagation of states and covariances; 4.1 Discrete-time systems; 4.2 Sampled-data systems; 4.3 Continuous-time systems; 4.4 Summary; Problems; PART II THE KALMAN FILTER; 5 The discrete-time Kalman filter; 5.1 Derivation of the discrete-time Kalman filter; 5.2 Kalman filter properties; 5.3 One-step Kalman filter equations; 5.4 Alternate propagation of covariance 5.4.1 Multiple state systems5.4.2 Scalar systems; 5.5 Divergence issues; 5.6 Summary; Problems; 6 Alternate Kalman filter formulations; 6.1 Sequential Kalman filtering; 6.2 Information filtering; 6.3 Square root filtering; 6.3.1 Condition number; 6.3.2 The square root time-update equation; 6.3.3 Potter's square root measurement-update equation; 6.3.4 Square root measurement update via triangularization; 6.3.5 Algorithms for orthogonal transformations; 6.4 U-D filtering; 6.4.1 U-D filtering: The measurement-update equation; 6.4.2 U-D filtering: The time-update equation; 6.5 Summary; Problems 7 Kalman filter generalizations7.1 Correlated process and measurement noise; 7.2 Colored process and measurement noise; 7.2.1 Colored process noise; 7.2.2 Colored measurement noise: State augmentation; 7.2.3 Colored measurement noise: Measurement differencing; 7.3 Steady-state filtering; 7.3.1 α-β filtering; 7.3.2 α-β-γ filtering; 7.3.3 A Hamiltonian approach to steady-state filtering; 7.4 Kalman filtering with fading memory; 7.5 Constrained Kalman filtering; 7.5.1 Model reduction; 7.5.2 Perfect measurements; 7.5.3 Projection approaches; 7.5.4 A pdf truncation approach; 7.6 Summary; Problems 8 The continuous-time Kalman filter |
Record Nr. | UNINA-9910877505803321 |
Simon Dan <1960-> | ||
Hoboken, N.J., : Wiley-Interscience, c2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|