top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Intrusion Detection [[electronic resource] ] : A Data Mining Approach / / by Nandita Sengupta, Jaya Sil
Intrusion Detection [[electronic resource] ] : A Data Mining Approach / / by Nandita Sengupta, Jaya Sil
Autore Sengupta Nandita
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XX, 136 p.)
Disciplina 353.00722
Collana Cognitive Intelligence and Robotics
Soggetto topico Computer communication systems
Computer security
Data encryption (Computer science)
Computer Communication Networks
Systems and Data Security
Cryptology
ISBN 981-15-2716-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction -- Chapter 2. Discretization -- Chapter 3. Data Reduction -- Chapter 4. Q-Learning Classifiers -- Chapter 5. Hierarchical Q - Learning Classifier -- Chapter 6. Conclusions and Future Research.
Record Nr. UNISA-996465469303316
Sengupta Nandita  
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Intrusion Detection : A Data Mining Approach / / by Nandita Sengupta, Jaya Sil
Intrusion Detection : A Data Mining Approach / / by Nandita Sengupta, Jaya Sil
Autore Sengupta Nandita
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XX, 136 p.)
Disciplina 353.00722
Collana Cognitive Intelligence and Robotics
Soggetto topico Computer communication systems
Computer security
Data encryption (Computer science)
Computer Communication Networks
Systems and Data Security
Cryptology
ISBN 981-15-2716-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction -- Chapter 2. Discretization -- Chapter 3. Data Reduction -- Chapter 4. Q-Learning Classifiers -- Chapter 5. Hierarchical Q - Learning Classifier -- Chapter 6. Conclusions and Future Research.
Record Nr. UNINA-9910373945203321
Sengupta Nandita  
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A Metaheuristic Approach to Protein Structure Prediction : Algorithms and Insights from Fitness Landscape Analysis / / by Nanda Dulal Jana, Swagatam Das, Jaya Sil
A Metaheuristic Approach to Protein Structure Prediction : Algorithms and Insights from Fitness Landscape Analysis / / by Nanda Dulal Jana, Swagatam Das, Jaya Sil
Autore Jana Nanda Dulal
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (xxix, 220 pages) : illustrations
Disciplina 006.3
Collana Emergence, Complexity and Computation
Soggetto topico Computational intelligence
Computational complexity
Artificial intelligence
Proteins 
Computational Intelligence
Complexity
Artificial Intelligence
Protein Structure
ISBN 3-319-74775-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Metaheuristic Protein Structure Prediction-An Overview -- Related Works -- Continuous Landscape Analysis using Random Walk Algorithm -- Landscape Characterization and Algorithms Selection for the PSP Problem -- The Levy distributed Parameter Adaptive Metaheuristic Algorithm for Protein Structure Prediction -- Protein Structure Prediction using Improved Variants of Metaheuristic Algorithms -- Hybrid Metaheuristic Approach for Protein Structure Prediction -- Conclusions and Future Research.
Record Nr. UNINA-9910299957003321
Jana Nanda Dulal  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui