Complex quantum systems : analysis of large coulomb systems / / editor, Heinz Siedentop, Ludwig-Maximilians-Universitat, Munchen, Germany |
Pubbl/distr/stampa | [Hackensack], NJ, : World Scientific, c2013 |
Descrizione fisica | 1 online resource (xi, 290 pages) : illustrations |
Disciplina | 530.12 |
Collana | Lecture notes series |
Soggetto topico |
Quantum electrodynamics - Mathematics
Quantum theory |
ISBN | 981-4460-15-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
CONTENTS; Foreword; Preface; Stability of Matter Rafael D. Benguria and Benjamın A. Loewe; 1. Introduction: The stability of quantum systems: A historical overview; 2. Stability of Matter: The classical proof of Lieb and Thirring; 2.1. Stability of the hydrogen atom in non-relativistic quantum mechanics; 2.2. Stability of a system of N electrons in non-relativistic quantum mechanics; 2.3. Stability of a many particle system via Thomas-Fermi theory; 2.4. Bibliographical remarks; 3. Lieb-Thirring Inequalities
3.1. Use of commutation methods to prove the Lieb-Thirring inequality for = 3/2 in dimension 13.2. The Eden-Foias bound ([46]); 3.3. Bibliographical remarks; 4. Electrostatic Inequalities; 5. The Maximum Number of Electrons an Atom Can Bind; 5.1. The maximum number of electrons for a one center case in the Thomas-Fermi model; 5.2. Bound on Nc(Z) for the TFW model in the atomic case; 6. The Stability of Matter for a Relativistic Toy Model; 6.1. Bibliographical remarks; 7. A New Lieb-Oxford Bound with Gradient Corrections; Acknowledgments; Appendix: A Short History of the Atom; References Mathematical Density and Density Matrix Functional Theory (DFT and DMFT) Volker Bach1. Introduction; 2. Exchange Correlation and LDA; 3. Kinetic Energy and Lieb-Thirring Inequality; 4. Thomas-Fermi Theory and Stability of Matter; 5. Hartree-Fock Theory; 6. Correlation Estimate Improving the Lieb-Oxford Inequality; 7. Accuracy of the Hartree-Fock Approximation for Large Neutral Atoms; 8. N-Representability; Acknowledgments; References; On the Dynamics of a Fermi Gas in a Random Medium with Dynamical Hartree-Fock Interactions Thomas Chen; 1. Introduction; Acknowledgment ReferencesOn the Minimization of Hamiltonians over Pure Gaussian States Jan Derezinski, Marcin Napiorkowski, and Jan Philip Solovej; 1. Introduction; Acknowledgments; 2. Preliminaries; 2.1. 2nd quantization; 2.2. Wick quantization; 2.3. Bogoliubov transformations; 2.4. Pure Gaussian states; 3. Main Result; References; Variational Approach to Electronic Structure Calculations on Second-Order Reduced Density Matrices and the N-Representability Problem Maho Nakata, Mituhiro Fukuda, and Katsuki Fujisawa; 1. Introduction; 2. The Reduced-Density-Matrix Method; 2.1. Pure states and ensemble states 2.2. The first-order and second-order reduced density matrices |
Record Nr. | UNINA-9910779883503321 |
[Hackensack], NJ, : World Scientific, c2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Complex quantum systems : analysis of large coulomb systems / / editor, Heinz Siedentop, Ludwig-Maximilians-Universitat, Munchen, Germany |
Pubbl/distr/stampa | [Hackensack], NJ, : World Scientific, c2013 |
Descrizione fisica | 1 online resource (xi, 290 pages) : illustrations |
Disciplina | 530.12 |
Collana | Lecture notes series |
Soggetto topico |
Quantum electrodynamics - Mathematics
Quantum theory |
ISBN | 981-4460-15-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
CONTENTS; Foreword; Preface; Stability of Matter Rafael D. Benguria and Benjamın A. Loewe; 1. Introduction: The stability of quantum systems: A historical overview; 2. Stability of Matter: The classical proof of Lieb and Thirring; 2.1. Stability of the hydrogen atom in non-relativistic quantum mechanics; 2.2. Stability of a system of N electrons in non-relativistic quantum mechanics; 2.3. Stability of a many particle system via Thomas-Fermi theory; 2.4. Bibliographical remarks; 3. Lieb-Thirring Inequalities
3.1. Use of commutation methods to prove the Lieb-Thirring inequality for = 3/2 in dimension 13.2. The Eden-Foias bound ([46]); 3.3. Bibliographical remarks; 4. Electrostatic Inequalities; 5. The Maximum Number of Electrons an Atom Can Bind; 5.1. The maximum number of electrons for a one center case in the Thomas-Fermi model; 5.2. Bound on Nc(Z) for the TFW model in the atomic case; 6. The Stability of Matter for a Relativistic Toy Model; 6.1. Bibliographical remarks; 7. A New Lieb-Oxford Bound with Gradient Corrections; Acknowledgments; Appendix: A Short History of the Atom; References Mathematical Density and Density Matrix Functional Theory (DFT and DMFT) Volker Bach1. Introduction; 2. Exchange Correlation and LDA; 3. Kinetic Energy and Lieb-Thirring Inequality; 4. Thomas-Fermi Theory and Stability of Matter; 5. Hartree-Fock Theory; 6. Correlation Estimate Improving the Lieb-Oxford Inequality; 7. Accuracy of the Hartree-Fock Approximation for Large Neutral Atoms; 8. N-Representability; Acknowledgments; References; On the Dynamics of a Fermi Gas in a Random Medium with Dynamical Hartree-Fock Interactions Thomas Chen; 1. Introduction; Acknowledgment ReferencesOn the Minimization of Hamiltonians over Pure Gaussian States Jan Derezinski, Marcin Napiorkowski, and Jan Philip Solovej; 1. Introduction; Acknowledgments; 2. Preliminaries; 2.1. 2nd quantization; 2.2. Wick quantization; 2.3. Bogoliubov transformations; 2.4. Pure Gaussian states; 3. Main Result; References; Variational Approach to Electronic Structure Calculations on Second-Order Reduced Density Matrices and the N-Representability Problem Maho Nakata, Mituhiro Fukuda, and Katsuki Fujisawa; 1. Introduction; 2. The Reduced-Density-Matrix Method; 2.1. Pure states and ensemble states 2.2. The first-order and second-order reduced density matrices |
Record Nr. | UNINA-9910815775503321 |
[Hackensack], NJ, : World Scientific, c2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Large coulomb systems : lecture notes on mathematical aspects of QED / / Jan Derezinski, Heinz Siedentop, editors |
Edizione | [1st ed. 2006.] |
Pubbl/distr/stampa | Berlin ; ; Heidelberg : , : Springer-Verlag, , [2006] |
Descrizione fisica | 1 online resource (332 p.) |
Disciplina | 530.15 |
Collana | Lecture Notes in Physics |
Soggetto topico |
Mathematical physics
Quantum theory |
ISBN |
1-280-62718-2
9786610627189 3-540-32579-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | A Tutorial Approach to the Renormalization Group and the Smooth Feshbach Map -- Local States of Free Bose Fields -- to Representations of the Canonical Commutation and Anticommutation Relations -- Mathematical Theory of the Wigner-Weisskopf Atom -- Non-Relativistic Matter and Quantized Radiation -- Dilute, Trapped Bose Gases and Bose-Einstein Condensation -- Perturbation Theory for QED Calculations of High-Z Few-electron Atoms -- The Relativistic Electron-Positron Field: Hartree-Fock Approximation and Fixed Electron Number. |
Record Nr. | UNINA-9910146625403321 |
Berlin ; ; Heidelberg : , : Springer-Verlag, , [2006] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Large coulomb systems : lecture notes on mathematical aspects of QED / / Jan Derezinski, Heinz Siedentop, editors |
Edizione | [1st ed. 2006.] |
Pubbl/distr/stampa | Berlin ; ; Heidelberg : , : Springer-Verlag, , [2006] |
Descrizione fisica | 1 online resource (332 p.) |
Disciplina | 530.15 |
Collana | Lecture Notes in Physics |
Soggetto topico |
Mathematical physics
Quantum theory |
ISBN |
1-280-62718-2
9786610627189 3-540-32579-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | A Tutorial Approach to the Renormalization Group and the Smooth Feshbach Map -- Local States of Free Bose Fields -- to Representations of the Canonical Commutation and Anticommutation Relations -- Mathematical Theory of the Wigner-Weisskopf Atom -- Non-Relativistic Matter and Quantized Radiation -- Dilute, Trapped Bose Gases and Bose-Einstein Condensation -- Perturbation Theory for QED Calculations of High-Z Few-electron Atoms -- The Relativistic Electron-Positron Field: Hartree-Fock Approximation and Fixed Electron Number. |
Record Nr. | UNISA-996466702503316 |
Berlin ; ; Heidelberg : , : Springer-Verlag, , [2006] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|