top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Introduction to Hida distributions [[electronic resource] /] / Si Si
Introduction to Hida distributions [[electronic resource] /] / Si Si
Autore Si Si
Pubbl/distr/stampa Singapore ; ; Hackensack, N.J., : World Scientific, c2012
Descrizione fisica 1 online resource (268 p.)
Disciplina 519.22
Soggetto topico White noise theory
Stochastic analysis
Stochastic differential equations
Soggetto genere / forma Electronic books.
ISBN 1-280-36188-3
9786613555250
981-283-689-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Preliminaries and Discrete Parameter White Noise; 1.1 Preliminaries; 1.2 Discrete parameter white noise; 1.3 Invariance of the measure μ; 1.4 Harmonic analysis arising from O(E) on the space of functionals of Y = {Y (n)}; 1.5 Quadratic forms; 1.6 Differential operators and related operators; 1.7 Probability distributions and Bochner-Minlos theorem; 2. Continuous Parameter White Noise; 2.1 Gaussian system; 2.2 Continuous parameter white noise; 2.3 Characteristic functional and Bochner-Minlos theorem; 2.4 Passage from discrete to continuous
2.5 Stationary generalized stochastic processes3. White Noise Functionals; 3.1 In line with standard analysis; 3.2 White noise functionals; 3.3 Infinite dimensional spaces spanned by generalized linear functionals of white noise; 3.4 Some of the details of quadratic functionals of white noise; 3.5 The T -transform and the S-transform; 3.6 White noise (t) related to δ-function; 3.7 Infinite dimensional space generated by Hermite polynomials in (t)'s of higher degree; 3.8 Generalized white noise functionals; 3.9 Approximation to Hida distributions
3.10 Renormalization in Hida distribution theory4. White Noise Analysis; 4.1 Operators acting on (L2)-; 4.2 Application to stochastic differential equation; 4.3 Differential calculus and Laplacian operators; 4.4 Infinite dimensional rotation group O(E); 4.5 Addenda; 5. Stochastic Integral; 5.1 Introduction; 5.2 Wiener integrals and multiple Wiener integrals; 5.3 The Ito integral; 5.4 Hitsuda-Skorokhod integrals; 5.5 Levy's stochastic integral; 5.6 Addendum : Path integrals; 6. Gaussian and Poisson Noises; 6.1 Poisson noise and its probability distribution
6.2 Comparison between the Gaussian white noise and the Poisson noise, with the help of characterization of measures6.3 Symmetric group in Poisson noise analysis; 6.4 Spaces of quadratic Hida distributions and their dualities; 7. Multiple Markov Properties of Generalized Gaussian Processes and Generalizations; 7.1 A brief discussion on canonical representation theory for Gaussian processes and multiple Markov property; 7.2 Duality for multiple Markov Gaussian processes in the restricted sense; 7.3 Uniformly multiple Markov processes
9.3 Stable distribution
Record Nr. UNINA-9910457274603321
Si Si  
Singapore ; ; Hackensack, N.J., : World Scientific, c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to Hida distributions [[electronic resource] /] / Si Si
Introduction to Hida distributions [[electronic resource] /] / Si Si
Autore Si Si
Pubbl/distr/stampa Singapore ; ; Hackensack, N.J., : World Scientific, c2012
Descrizione fisica 1 online resource (268 p.)
Disciplina 519.22
Soggetto topico White noise theory
Stochastic analysis
Stochastic differential equations
ISBN 1-280-36188-3
9786613555250
981-283-689-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Preliminaries and Discrete Parameter White Noise; 1.1 Preliminaries; 1.2 Discrete parameter white noise; 1.3 Invariance of the measure μ; 1.4 Harmonic analysis arising from O(E) on the space of functionals of Y = {Y (n)}; 1.5 Quadratic forms; 1.6 Differential operators and related operators; 1.7 Probability distributions and Bochner-Minlos theorem; 2. Continuous Parameter White Noise; 2.1 Gaussian system; 2.2 Continuous parameter white noise; 2.3 Characteristic functional and Bochner-Minlos theorem; 2.4 Passage from discrete to continuous
2.5 Stationary generalized stochastic processes3. White Noise Functionals; 3.1 In line with standard analysis; 3.2 White noise functionals; 3.3 Infinite dimensional spaces spanned by generalized linear functionals of white noise; 3.4 Some of the details of quadratic functionals of white noise; 3.5 The T -transform and the S-transform; 3.6 White noise (t) related to δ-function; 3.7 Infinite dimensional space generated by Hermite polynomials in (t)'s of higher degree; 3.8 Generalized white noise functionals; 3.9 Approximation to Hida distributions
3.10 Renormalization in Hida distribution theory4. White Noise Analysis; 4.1 Operators acting on (L2)-; 4.2 Application to stochastic differential equation; 4.3 Differential calculus and Laplacian operators; 4.4 Infinite dimensional rotation group O(E); 4.5 Addenda; 5. Stochastic Integral; 5.1 Introduction; 5.2 Wiener integrals and multiple Wiener integrals; 5.3 The Ito integral; 5.4 Hitsuda-Skorokhod integrals; 5.5 Levy's stochastic integral; 5.6 Addendum : Path integrals; 6. Gaussian and Poisson Noises; 6.1 Poisson noise and its probability distribution
6.2 Comparison between the Gaussian white noise and the Poisson noise, with the help of characterization of measures6.3 Symmetric group in Poisson noise analysis; 6.4 Spaces of quadratic Hida distributions and their dualities; 7. Multiple Markov Properties of Generalized Gaussian Processes and Generalizations; 7.1 A brief discussion on canonical representation theory for Gaussian processes and multiple Markov property; 7.2 Duality for multiple Markov Gaussian processes in the restricted sense; 7.3 Uniformly multiple Markov processes
9.3 Stable distribution
Record Nr. UNINA-9910778818303321
Si Si  
Singapore ; ; Hackensack, N.J., : World Scientific, c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to Hida distributions / / Si Si
Introduction to Hida distributions / / Si Si
Autore Si Si
Edizione [1st ed.]
Pubbl/distr/stampa Singapore ; ; Hackensack, N.J., : World Scientific, c2012
Descrizione fisica 1 online resource (268 p.)
Disciplina 519.22
Soggetto topico White noise theory
Stochastic analysis
Stochastic differential equations
ISBN 1-280-36188-3
9786613555250
981-283-689-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Preliminaries and Discrete Parameter White Noise; 1.1 Preliminaries; 1.2 Discrete parameter white noise; 1.3 Invariance of the measure μ; 1.4 Harmonic analysis arising from O(E) on the space of functionals of Y = {Y (n)}; 1.5 Quadratic forms; 1.6 Differential operators and related operators; 1.7 Probability distributions and Bochner-Minlos theorem; 2. Continuous Parameter White Noise; 2.1 Gaussian system; 2.2 Continuous parameter white noise; 2.3 Characteristic functional and Bochner-Minlos theorem; 2.4 Passage from discrete to continuous
2.5 Stationary generalized stochastic processes3. White Noise Functionals; 3.1 In line with standard analysis; 3.2 White noise functionals; 3.3 Infinite dimensional spaces spanned by generalized linear functionals of white noise; 3.4 Some of the details of quadratic functionals of white noise; 3.5 The T -transform and the S-transform; 3.6 White noise (t) related to δ-function; 3.7 Infinite dimensional space generated by Hermite polynomials in (t)'s of higher degree; 3.8 Generalized white noise functionals; 3.9 Approximation to Hida distributions
3.10 Renormalization in Hida distribution theory4. White Noise Analysis; 4.1 Operators acting on (L2)-; 4.2 Application to stochastic differential equation; 4.3 Differential calculus and Laplacian operators; 4.4 Infinite dimensional rotation group O(E); 4.5 Addenda; 5. Stochastic Integral; 5.1 Introduction; 5.2 Wiener integrals and multiple Wiener integrals; 5.3 The Ito integral; 5.4 Hitsuda-Skorokhod integrals; 5.5 Levy's stochastic integral; 5.6 Addendum : Path integrals; 6. Gaussian and Poisson Noises; 6.1 Poisson noise and its probability distribution
6.2 Comparison between the Gaussian white noise and the Poisson noise, with the help of characterization of measures6.3 Symmetric group in Poisson noise analysis; 6.4 Spaces of quadratic Hida distributions and their dualities; 7. Multiple Markov Properties of Generalized Gaussian Processes and Generalizations; 7.1 A brief discussion on canonical representation theory for Gaussian processes and multiple Markov property; 7.2 Duality for multiple Markov Gaussian processes in the restricted sense; 7.3 Uniformly multiple Markov processes
9.3 Stable distribution
Record Nr. UNINA-9910821509903321
Si Si  
Singapore ; ; Hackensack, N.J., : World Scientific, c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui