top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Segmentation, classification, and registration of multi-modality medical imaging data : miccai 2020 challenges, abcs 2020, l2r 2020, tn-scui 2020, held in conjunction with miccai 2020, lima, peru, october 4-8, 2020, proceedings / / edited by Nadya Shusharina, Mattias P. Heinrich, Ruobing Huang
Segmentation, classification, and registration of multi-modality medical imaging data : miccai 2020 challenges, abcs 2020, l2r 2020, tn-scui 2020, held in conjunction with miccai 2020, lima, peru, october 4-8, 2020, proceedings / / edited by Nadya Shusharina, Mattias P. Heinrich, Ruobing Huang
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (XIX, 156 p. 57 illus., 54 illus. in color.)
Disciplina 616.0754
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
ISBN 3-030-71827-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ABCs – Anatomical Brain Barriers to Cancer Spread: Segmentation from CT and MR Images -- Cross-modality Brain Structures Image Segmentation for the Radiotherapy Target Definition and Plan Optimization -- Domain Knowledge Driven Multi-modal Segmentation of Anatomical Brain Barriers to Cancer Spread -- Ensembled ResUnet for Anatomical Brain Barriers Segmentation -- An Enhanced Coarse-to-_ne Framework for the segmentation of clinical target volume -- Automatic Segmentation of brain structures for treatment planning optimization and target volume definition -- A Bi-Directional, Multi-Modality Framework for Segmentation of Brain Structures -- L2R – Learn2Reg: Multitask and Multimodal 3D Medical Image Registration -- Large Deformation Image Registration with Anatomy-aware Laplacian Pyramid Networks -- Discrete Unsupervised 3D Registration Methods for the Learn2Reg Challenge -- Variable Fraunhofer MEVIS RegLib comprehensively applied to Learn2Reg Challenge -- Learning a deformable registration pyramid -- Deep learning based registration using spatial gradients and noisy segmentation labels -- Multi-step, Learning-based, Semi-supervised Image Registration Algorithm -- Using Elastix to register inhale/exhale intrasubject thorax CT: a unsupervised baseline to the task 2 of the Learn2Reg challenge -- TN-SCUI – Thyroid Nodule Segmentation and Classification in Ultrasound Images -- Cascade Unet and CH-Unet for thyroid nodule segmenation and benign and malignant classification -- Identifying Thyroid Nodules in Ultrasound Images through Segmentation-guided Discriminative Localization -- Cascaded Networks for Thyroid Nodule Diagnosis from Ultrasound Images -- Automatic Segmentation and Classification of Thyroid Nodules in Ultrasound Images with Convolutional Neural Networks -- LRTHR-Net: A Low-Resolution-to-High-Resolution Framework to Iteratively Refine the Segmentation of Thyroid Nodule in Ultrasound Images -- Coarse to Fine Ensemble Network for Thyroid Nodule Segmentation.
Record Nr. UNINA-9910484610403321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Segmentation, classification, and registration of multi-modality medical imaging data : miccai 2020 challenges, abcs 2020, l2r 2020, tn-scui 2020, held in conjunction with miccai 2020, lima, peru, october 4-8, 2020, proceedings / / edited by Nadya Shusharina, Mattias P. Heinrich, Ruobing Huang
Segmentation, classification, and registration of multi-modality medical imaging data : miccai 2020 challenges, abcs 2020, l2r 2020, tn-scui 2020, held in conjunction with miccai 2020, lima, peru, october 4-8, 2020, proceedings / / edited by Nadya Shusharina, Mattias P. Heinrich, Ruobing Huang
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (XIX, 156 p. 57 illus., 54 illus. in color.)
Disciplina 616.0754
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
ISBN 3-030-71827-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ABCs – Anatomical Brain Barriers to Cancer Spread: Segmentation from CT and MR Images -- Cross-modality Brain Structures Image Segmentation for the Radiotherapy Target Definition and Plan Optimization -- Domain Knowledge Driven Multi-modal Segmentation of Anatomical Brain Barriers to Cancer Spread -- Ensembled ResUnet for Anatomical Brain Barriers Segmentation -- An Enhanced Coarse-to-_ne Framework for the segmentation of clinical target volume -- Automatic Segmentation of brain structures for treatment planning optimization and target volume definition -- A Bi-Directional, Multi-Modality Framework for Segmentation of Brain Structures -- L2R – Learn2Reg: Multitask and Multimodal 3D Medical Image Registration -- Large Deformation Image Registration with Anatomy-aware Laplacian Pyramid Networks -- Discrete Unsupervised 3D Registration Methods for the Learn2Reg Challenge -- Variable Fraunhofer MEVIS RegLib comprehensively applied to Learn2Reg Challenge -- Learning a deformable registration pyramid -- Deep learning based registration using spatial gradients and noisy segmentation labels -- Multi-step, Learning-based, Semi-supervised Image Registration Algorithm -- Using Elastix to register inhale/exhale intrasubject thorax CT: a unsupervised baseline to the task 2 of the Learn2Reg challenge -- TN-SCUI – Thyroid Nodule Segmentation and Classification in Ultrasound Images -- Cascade Unet and CH-Unet for thyroid nodule segmenation and benign and malignant classification -- Identifying Thyroid Nodules in Ultrasound Images through Segmentation-guided Discriminative Localization -- Cascaded Networks for Thyroid Nodule Diagnosis from Ultrasound Images -- Automatic Segmentation and Classification of Thyroid Nodules in Ultrasound Images with Convolutional Neural Networks -- LRTHR-Net: A Low-Resolution-to-High-Resolution Framework to Iteratively Refine the Segmentation of Thyroid Nodule in Ultrasound Images -- Coarse to Fine Ensemble Network for Thyroid Nodule Segmentation.
Record Nr. UNISA-996464400803316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui