top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced carbon materials and technology / / edited by Ashutosh Tiwari and S.K. Shukla
Advanced carbon materials and technology / / edited by Ashutosh Tiwari and S.K. Shukla
Pubbl/distr/stampa Salem, Massachusetts : , : Scrivener Publishing, , [2014]
Descrizione fisica 1 online resource (514 p.)
Disciplina 620.193
Altri autori (Persone) TiwariAshutosh <1978->
ShuklaS. K
Collana Advance materials series
Soggetto topico Carbon
Carbon composites
ISBN 1-118-89543-6
1-118-89539-8
1-118-89536-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright Page; Contents; Preface; Part 1 Graphene, Carbon Nanotubes and Fullerenes; 1 Synthesis, Characterization and Functionalization of Carbon Nanotubes and Graphene: A Glimpse of Their Application; 1.1 Introduction; 1.2 Synthesis and Characterization of Carbon Nanotubes; 1.3 Synthesis and Characterization of Graphene; 1.3.1 Micromechanical Cleavage of Highly Oriented Pyrolytic Graphite; 1.3.2 Chemical Vapor Deposition Growth of Graphene either as Stand Alone or on Substrate; 1.3.3 Chemical and Thermal Exfoliation of Graphite Oxide; 1.3.4 Arc-Discharge Method
1.4 Methods Used in Our Lab: CVD, Thermal Exfoliation, Arc Discharge and Chemical Reduction1.4.1 Raman Spectra; 1.4.2 Electrochemical Exfoliation; 1.5 Functionalization of Carbon Nanotubes and Graphene; 1.5.1 Covalent Functionalization; 1.5.2 Non-Covalent Functionalization; 1.5.3 FTIR Analysis of CNTs and FCNTs; 1.6 Applications; 1.7 Conclusion; Acknowledgements; References; 2 Surface Modification of Graphene; 2.1 Introduction; 2.2 Surface-Modified Graphene from GO; 2.2.1 Covalent Surface Modification; 2.2.2 Non-covalent Surface Modification; 2.3 Application of Surface-Modified Graphene
2.3.1 Polymer Composites2.3.2 Sensors; 2.3.3 Drug Delivery System; 2.3.4 Lubricants; 2.3.5 Nanofluids; 2.3.6 Supercapacitor; 2.4 Conclusions and Future Directions of Research; Acknowledgement; References; 3 Graphene and Carbon Nanotube-based Electrochemical Biosensors for Environmental Monitoring; 3.1 Introduction; 3.1.1 Carbon Nanotubes (CNTs); 3.1.2 Graphene (GR); 3.1.3 Electrochemical Sensors; 3.1.4 Sensors and Biosensors Based on CNT and GR; 3.2 Applications of Electrochemical Biosensors; 3.2.1 Heavy Metals; 3.2.2 Phenols; 3.2.3 Pesticides; 3.3 Conclusions and Future Perspectives
References4 Catalytic Application of Carbon-based Nanostructured Materials on Hydrogen Sorption Behavior of Light Metal Hydrides; 4.1 Introduction; 4.2 Different Carbon Allotropes; 4.3 Carbon Nanomaterials as Catalyst for Different Storage Materials; 4.4 Key Results with MgH2, NaAlH4 and Li-Mg-N-H Systems; 4.4.1 Magnesium Hydride; 4.4.2 Sodium Alanate; 4.4.3 Amides/Imides; 4.5 Summary; Acknowledgements; References; 5 Carbon Nanotubes and Their Applications; 5.1 Introduction; 5.2 Carbon Nanotubes Structure; 5.3 Carbon Nanotube Physical Properties; 5.4 Carbon Nanotube Synthesis and Processing
5.5 Carbon Nanotube Surface Modification5.6 Applications of Carbon Nanotubes; 5.6.1 Composite Materials; 5.6.2 Nano Coatings - Antimicrobials and Microelectronics; 5.6.3 Biosensors; 5.6.4 Energy Storages; 5.7 Conclusion; References; 6 Bioimpact of Carbon Nanomaterials; 6.1 Biologically Active Fullerene Derivatives; 6.1.1 Introduction; 6.1.2 Functionalization/Derivatization of Fullerene C60; 6.1.3 Biological Activity of Non-Derivatized Fullerene C60; 6.1.4 Biological Activity of Derivatized Fullerene C60; 6.1.5 Chemical Synthesis of Fullerenol C60(OH)n; 6.1.6 Fullerenol and Biosystems
6.2 Biologically Active Graphene Materials
Record Nr. UNISA-996208435403316
Salem, Massachusetts : , : Scrivener Publishing, , [2014]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced carbon materials and technology / / edited by Ashutosh Tiwari and S.K. Shukla
Advanced carbon materials and technology / / edited by Ashutosh Tiwari and S.K. Shukla
Pubbl/distr/stampa Salem, Massachusetts : , : Scrivener Publishing, , [2014]
Descrizione fisica 1 online resource (514 p.)
Disciplina 620.193
Altri autori (Persone) TiwariAshutosh <1978->
ShuklaS. K
Collana Advance materials series
Soggetto topico Carbon
Carbon composites
ISBN 1-118-89543-6
1-118-89539-8
1-118-89536-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright Page; Contents; Preface; Part 1 Graphene, Carbon Nanotubes and Fullerenes; 1 Synthesis, Characterization and Functionalization of Carbon Nanotubes and Graphene: A Glimpse of Their Application; 1.1 Introduction; 1.2 Synthesis and Characterization of Carbon Nanotubes; 1.3 Synthesis and Characterization of Graphene; 1.3.1 Micromechanical Cleavage of Highly Oriented Pyrolytic Graphite; 1.3.2 Chemical Vapor Deposition Growth of Graphene either as Stand Alone or on Substrate; 1.3.3 Chemical and Thermal Exfoliation of Graphite Oxide; 1.3.4 Arc-Discharge Method
1.4 Methods Used in Our Lab: CVD, Thermal Exfoliation, Arc Discharge and Chemical Reduction1.4.1 Raman Spectra; 1.4.2 Electrochemical Exfoliation; 1.5 Functionalization of Carbon Nanotubes and Graphene; 1.5.1 Covalent Functionalization; 1.5.2 Non-Covalent Functionalization; 1.5.3 FTIR Analysis of CNTs and FCNTs; 1.6 Applications; 1.7 Conclusion; Acknowledgements; References; 2 Surface Modification of Graphene; 2.1 Introduction; 2.2 Surface-Modified Graphene from GO; 2.2.1 Covalent Surface Modification; 2.2.2 Non-covalent Surface Modification; 2.3 Application of Surface-Modified Graphene
2.3.1 Polymer Composites2.3.2 Sensors; 2.3.3 Drug Delivery System; 2.3.4 Lubricants; 2.3.5 Nanofluids; 2.3.6 Supercapacitor; 2.4 Conclusions and Future Directions of Research; Acknowledgement; References; 3 Graphene and Carbon Nanotube-based Electrochemical Biosensors for Environmental Monitoring; 3.1 Introduction; 3.1.1 Carbon Nanotubes (CNTs); 3.1.2 Graphene (GR); 3.1.3 Electrochemical Sensors; 3.1.4 Sensors and Biosensors Based on CNT and GR; 3.2 Applications of Electrochemical Biosensors; 3.2.1 Heavy Metals; 3.2.2 Phenols; 3.2.3 Pesticides; 3.3 Conclusions and Future Perspectives
References4 Catalytic Application of Carbon-based Nanostructured Materials on Hydrogen Sorption Behavior of Light Metal Hydrides; 4.1 Introduction; 4.2 Different Carbon Allotropes; 4.3 Carbon Nanomaterials as Catalyst for Different Storage Materials; 4.4 Key Results with MgH2, NaAlH4 and Li-Mg-N-H Systems; 4.4.1 Magnesium Hydride; 4.4.2 Sodium Alanate; 4.4.3 Amides/Imides; 4.5 Summary; Acknowledgements; References; 5 Carbon Nanotubes and Their Applications; 5.1 Introduction; 5.2 Carbon Nanotubes Structure; 5.3 Carbon Nanotube Physical Properties; 5.4 Carbon Nanotube Synthesis and Processing
5.5 Carbon Nanotube Surface Modification5.6 Applications of Carbon Nanotubes; 5.6.1 Composite Materials; 5.6.2 Nano Coatings - Antimicrobials and Microelectronics; 5.6.3 Biosensors; 5.6.4 Energy Storages; 5.7 Conclusion; References; 6 Bioimpact of Carbon Nanomaterials; 6.1 Biologically Active Fullerene Derivatives; 6.1.1 Introduction; 6.1.2 Functionalization/Derivatization of Fullerene C60; 6.1.3 Biological Activity of Non-Derivatized Fullerene C60; 6.1.4 Biological Activity of Derivatized Fullerene C60; 6.1.5 Chemical Synthesis of Fullerenol C60(OH)n; 6.1.6 Fullerenol and Biosystems
6.2 Biologically Active Graphene Materials
Record Nr. UNINA-9910138976103321
Salem, Massachusetts : , : Scrivener Publishing, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced carbon materials and technology / / edited by Ashutosh Tiwari and S.K. Shukla
Advanced carbon materials and technology / / edited by Ashutosh Tiwari and S.K. Shukla
Pubbl/distr/stampa Salem, Massachusetts : , : Scrivener Publishing, , [2014]
Descrizione fisica 1 online resource (514 p.)
Disciplina 620.193
Altri autori (Persone) TiwariAshutosh <1978->
ShuklaS. K
Collana Advance materials series
Soggetto topico Carbon
Carbon composites
ISBN 1-118-89543-6
1-118-89539-8
1-118-89536-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright Page; Contents; Preface; Part 1 Graphene, Carbon Nanotubes and Fullerenes; 1 Synthesis, Characterization and Functionalization of Carbon Nanotubes and Graphene: A Glimpse of Their Application; 1.1 Introduction; 1.2 Synthesis and Characterization of Carbon Nanotubes; 1.3 Synthesis and Characterization of Graphene; 1.3.1 Micromechanical Cleavage of Highly Oriented Pyrolytic Graphite; 1.3.2 Chemical Vapor Deposition Growth of Graphene either as Stand Alone or on Substrate; 1.3.3 Chemical and Thermal Exfoliation of Graphite Oxide; 1.3.4 Arc-Discharge Method
1.4 Methods Used in Our Lab: CVD, Thermal Exfoliation, Arc Discharge and Chemical Reduction1.4.1 Raman Spectra; 1.4.2 Electrochemical Exfoliation; 1.5 Functionalization of Carbon Nanotubes and Graphene; 1.5.1 Covalent Functionalization; 1.5.2 Non-Covalent Functionalization; 1.5.3 FTIR Analysis of CNTs and FCNTs; 1.6 Applications; 1.7 Conclusion; Acknowledgements; References; 2 Surface Modification of Graphene; 2.1 Introduction; 2.2 Surface-Modified Graphene from GO; 2.2.1 Covalent Surface Modification; 2.2.2 Non-covalent Surface Modification; 2.3 Application of Surface-Modified Graphene
2.3.1 Polymer Composites2.3.2 Sensors; 2.3.3 Drug Delivery System; 2.3.4 Lubricants; 2.3.5 Nanofluids; 2.3.6 Supercapacitor; 2.4 Conclusions and Future Directions of Research; Acknowledgement; References; 3 Graphene and Carbon Nanotube-based Electrochemical Biosensors for Environmental Monitoring; 3.1 Introduction; 3.1.1 Carbon Nanotubes (CNTs); 3.1.2 Graphene (GR); 3.1.3 Electrochemical Sensors; 3.1.4 Sensors and Biosensors Based on CNT and GR; 3.2 Applications of Electrochemical Biosensors; 3.2.1 Heavy Metals; 3.2.2 Phenols; 3.2.3 Pesticides; 3.3 Conclusions and Future Perspectives
References4 Catalytic Application of Carbon-based Nanostructured Materials on Hydrogen Sorption Behavior of Light Metal Hydrides; 4.1 Introduction; 4.2 Different Carbon Allotropes; 4.3 Carbon Nanomaterials as Catalyst for Different Storage Materials; 4.4 Key Results with MgH2, NaAlH4 and Li-Mg-N-H Systems; 4.4.1 Magnesium Hydride; 4.4.2 Sodium Alanate; 4.4.3 Amides/Imides; 4.5 Summary; Acknowledgements; References; 5 Carbon Nanotubes and Their Applications; 5.1 Introduction; 5.2 Carbon Nanotubes Structure; 5.3 Carbon Nanotube Physical Properties; 5.4 Carbon Nanotube Synthesis and Processing
5.5 Carbon Nanotube Surface Modification5.6 Applications of Carbon Nanotubes; 5.6.1 Composite Materials; 5.6.2 Nano Coatings - Antimicrobials and Microelectronics; 5.6.3 Biosensors; 5.6.4 Energy Storages; 5.7 Conclusion; References; 6 Bioimpact of Carbon Nanomaterials; 6.1 Biologically Active Fullerene Derivatives; 6.1.1 Introduction; 6.1.2 Functionalization/Derivatization of Fullerene C60; 6.1.3 Biological Activity of Non-Derivatized Fullerene C60; 6.1.4 Biological Activity of Derivatized Fullerene C60; 6.1.5 Chemical Synthesis of Fullerenol C60(OH)n; 6.1.6 Fullerenol and Biosystems
6.2 Biologically Active Graphene Materials
Record Nr. UNINA-9910828289703321
Salem, Massachusetts : , : Scrivener Publishing, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui