top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Density functional theory [[electronic resource] ] : a practical introduction / / David S. Sholl and Jan Steckel
Density functional theory [[electronic resource] ] : a practical introduction / / David S. Sholl and Jan Steckel
Autore Sholl David S
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2009
Descrizione fisica 1 online resource (252 p.)
Disciplina 530.14/4
Altri autori (Persone) SteckelJanice A
Soggetto topico Density functionals
Mathematical physics
Quantum chemistry
ISBN 1-118-21104-9
1-282-13728-X
9786612137280
0-470-44771-0
0-470-44770-2
Classificazione UL 2000
VE 5650
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto DENSITY FUNCTIONAL THEORY; CONTENTS; Preface; 1 What Is Density Functional Theory?; 1.1 How to Approach This Book; 1.2 Examples of DFT in Action; 1.2.1 Ammonia Synthesis by Heterogeneous Catalysis; 1.2.2 Embrittlement of Metals by Trace Impurities; 1.2.3 Materials Properties for Modeling Planetary Formation; 1.3 The Schrödinger Equation; 1.4 Density Functional Theory-From Wave Functions to Electron Density; 1.5 Exchange-Correlation Functional; 1.6 The Quantum Chemistry Tourist; 1.6.1 Localized and Spatially Extended Functions; 1.6.2 Wave-Function-Based Methods; 1.6.3 Hartree-Fock Method
1.6.4 Beyond Hartree-Fock1.7 What Can DFT Not Do?; 1.8 Density Functional Theory in Other Fields; 1.9 How to Approach This Book (Revisited); References; Further Reading; 2 DFT Calculations for Simple Solids; 2.1 Periodic Structures, Supercells, and Lattice Parameters; 2.2 Face-Centered Cubic Materials; 2.3 Hexagonal Close-Packed Materials; 2.4 Crystal Structure Prediction; 2.5 Phase Transformations; Exercises; Further Reading; Appendix Calculation Details; 3 Nuts and Bolts of DFT Calculations; 3.1 Reciprocal Space and k Points; 3.1.1 Plane Waves and the Brillouin Zone
3.1.2 Integrals in k Space3.1.3 Choosing k Points in the Brillouin Zone; 3.1.4 Metals-Special Cases in k Space; 3.1.5 Summary of k Space; 3.2 Energy Cutoffs; 3.2.1 Pseudopotentials; 3.3 Numerical Optimization; 3.3.1 Optimization in One Dimension; 3.3.2 Optimization in More than One Dimension; 3.3.3 What Do I Really Need to Know about Optimization?; 3.4 DFT Total Energies-An Iterative Optimization Problem; 3.5 Geometry Optimization; 3.5.1 Internal Degrees of Freedom; 3.5.2 Geometry Optimization with Constrained Atoms; 3.5.3 Optimizing Supercell Volume and Shape; Exercises; References
Further ReadingAppendix Calculation Details; 4 DFT Calculations for Surfaces of Solids; 4.1 Importance of Surfaces; 4.2 Periodic Boundary Conditions and Slab Models; 4.3 Choosing k Points for Surface Calculations; 4.4 Classification of Surfaces by Miller Indices; 4.5 Surface Relaxation; 4.6 Calculation of Surface Energies; 4.7 Symmetric and Asymmetric Slab Models; 4.8 Surface Reconstruction; 4.9 Adsorbates on Surfaces; 4.9.1 Accuracy of Adsorption Energies; 4.10 Effects of Surface Coverage; Exercises; References; Further Reading; Appendix Calculation Details
5 DFT Calculations of Vibrational Frequencies5.1 Isolated Molecules; 5.2 Vibrations of a Collection of Atoms; 5.3 Molecules on Surfaces; 5.4 Zero-Point Energies; 5.5 Phonons and Delocalized Modes; Exercises; Reference; Further Reading; Appendix Calculation Details; 6 Calculating Rates of Chemical Processes Using Transition State Theory; 6.1 One-Dimensional Example; 6.2 Multidimensional Transition State Theory; 6.3 Finding Transition States; 6.3.1 Elastic Band Method; 6.3.2 Nudged Elastic Band Method; 6.3.3 Initializing NEB Calculations; 6.4 Finding the Right Transition States
6.5 Connecting Individual Rates to Overall Dynamics
Record Nr. UNINA-9910146412203321
Sholl David S  
Hoboken, N.J., : Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Density functional theory : a practical introduction / / David S. Sholl and Jan Steckel
Density functional theory : a practical introduction / / David S. Sholl and Jan Steckel
Autore Sholl David S
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2009
Descrizione fisica 1 online resource (252 p.)
Disciplina 530.14/4
Altri autori (Persone) SteckelJanice A
Soggetto topico Density functionals
Mathematical physics
Quantum chemistry
ISBN 1-118-21104-9
1-282-13728-X
9786612137280
0-470-44771-0
0-470-44770-2
Classificazione UL 2000
VE 5650
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto DENSITY FUNCTIONAL THEORY; CONTENTS; Preface; 1 What Is Density Functional Theory?; 1.1 How to Approach This Book; 1.2 Examples of DFT in Action; 1.2.1 Ammonia Synthesis by Heterogeneous Catalysis; 1.2.2 Embrittlement of Metals by Trace Impurities; 1.2.3 Materials Properties for Modeling Planetary Formation; 1.3 The Schrödinger Equation; 1.4 Density Functional Theory-From Wave Functions to Electron Density; 1.5 Exchange-Correlation Functional; 1.6 The Quantum Chemistry Tourist; 1.6.1 Localized and Spatially Extended Functions; 1.6.2 Wave-Function-Based Methods; 1.6.3 Hartree-Fock Method
1.6.4 Beyond Hartree-Fock1.7 What Can DFT Not Do?; 1.8 Density Functional Theory in Other Fields; 1.9 How to Approach This Book (Revisited); References; Further Reading; 2 DFT Calculations for Simple Solids; 2.1 Periodic Structures, Supercells, and Lattice Parameters; 2.2 Face-Centered Cubic Materials; 2.3 Hexagonal Close-Packed Materials; 2.4 Crystal Structure Prediction; 2.5 Phase Transformations; Exercises; Further Reading; Appendix Calculation Details; 3 Nuts and Bolts of DFT Calculations; 3.1 Reciprocal Space and k Points; 3.1.1 Plane Waves and the Brillouin Zone
3.1.2 Integrals in k Space3.1.3 Choosing k Points in the Brillouin Zone; 3.1.4 Metals-Special Cases in k Space; 3.1.5 Summary of k Space; 3.2 Energy Cutoffs; 3.2.1 Pseudopotentials; 3.3 Numerical Optimization; 3.3.1 Optimization in One Dimension; 3.3.2 Optimization in More than One Dimension; 3.3.3 What Do I Really Need to Know about Optimization?; 3.4 DFT Total Energies-An Iterative Optimization Problem; 3.5 Geometry Optimization; 3.5.1 Internal Degrees of Freedom; 3.5.2 Geometry Optimization with Constrained Atoms; 3.5.3 Optimizing Supercell Volume and Shape; Exercises; References
Further ReadingAppendix Calculation Details; 4 DFT Calculations for Surfaces of Solids; 4.1 Importance of Surfaces; 4.2 Periodic Boundary Conditions and Slab Models; 4.3 Choosing k Points for Surface Calculations; 4.4 Classification of Surfaces by Miller Indices; 4.5 Surface Relaxation; 4.6 Calculation of Surface Energies; 4.7 Symmetric and Asymmetric Slab Models; 4.8 Surface Reconstruction; 4.9 Adsorbates on Surfaces; 4.9.1 Accuracy of Adsorption Energies; 4.10 Effects of Surface Coverage; Exercises; References; Further Reading; Appendix Calculation Details
5 DFT Calculations of Vibrational Frequencies5.1 Isolated Molecules; 5.2 Vibrations of a Collection of Atoms; 5.3 Molecules on Surfaces; 5.4 Zero-Point Energies; 5.5 Phonons and Delocalized Modes; Exercises; Reference; Further Reading; Appendix Calculation Details; 6 Calculating Rates of Chemical Processes Using Transition State Theory; 6.1 One-Dimensional Example; 6.2 Multidimensional Transition State Theory; 6.3 Finding Transition States; 6.3.1 Elastic Band Method; 6.3.2 Nudged Elastic Band Method; 6.3.3 Initializing NEB Calculations; 6.4 Finding the Right Transition States
6.5 Connecting Individual Rates to Overall Dynamics
Record Nr. UNINA-9910822436203321
Sholl David S  
Hoboken, N.J., : Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui