top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
AI, IoT, Big Data and Cloud Computing for Industry 4.0 / / edited by Amy Neustein, Parikshit N. Mahalle, Prachi Joshi, Gitanjali Rahul Shinde
AI, IoT, Big Data and Cloud Computing for Industry 4.0 / / edited by Amy Neustein, Parikshit N. Mahalle, Prachi Joshi, Gitanjali Rahul Shinde
Autore Neustein Amy
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (589 pages)
Disciplina 658.40380285
Altri autori (Persone) MahalleParikshit N
JoshiPrachi
ShindeGitanjali Rahul
Collana Signals and Communication Technology
Soggetto topico Computational intelligence
Telecommunication
Artificial intelligence
Computational Intelligence
Communications Engineering, Networks
Artificial Intelligence
ISBN 3-031-29713-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Section 1: Fundamentals of the Industry 4.0 -- Fundamental of IoT -- Architecture of IoT -- Automation -- Big data challenges -- Cloud computing services -- convergence of IoT and cloud computing -- Section 2: Emerging trends in Artificial Intelligence -- Knowledge representation -- Machine learning -- Deep learning -- AI based industry automation -- Section 3: AI based data management, architecture and framework -- Algorithms and techniques for data management and cloud -- Reference architectures -- Frameworks for integrating IoT, ML and Cloud -- Section 4: Software Portability and Virtual Machine Design -- Virtual Machine designs -- VM design and programming-language/compiler theory concerns -- Section 5: Security for industry 4.0 -- Industry 4.0 -- Artificial intelligence -- Machine Learning -- Signal Processing -- Multimedia -- Big data -- Software Portability -- Virtual Machines -- Conclusion. .
Record Nr. UNINA-9910736004203321
Neustein Amy  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Foundations of Data Science for Engineering Problem Solving
Foundations of Data Science for Engineering Problem Solving
Autore Mahalle Parikshit Narendra
Pubbl/distr/stampa Singapore : , : Springer Singapore Pte. Limited, , 2021
Descrizione fisica 1 online resource (125 pages)
Altri autori (Persone) ShindeGitanjali Rahul
PisePriya Dudhale
DeshmukhJyoti Yogesh
Collana Studies in Big Data Ser.
Soggetto genere / forma Electronic books.
ISBN 981-16-5160-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Authors -- 1 Introduction to Data Science -- 1.1 What is Data Science? -- 1.2 Evolution with a Need for Data Science -- 1.3 Applications of Data Science -- 1.3.1 Use of Data Science in D-Mart (E-commerce and Retail Management) -- 1.3.2 Narrow Artificial Intelligence (AI) -- 1.3.3 Trustworthy Artificial Intelligence (AI) -- 1.4 Summary -- References -- 2 Data Collection and Preparation -- 2.1 Types of Data -- 2.2 Datasets -- 2.3 Taxonomy of Dataset -- 2.4 Statistical Perspective -- 2.5 Dataset Pre-processing -- 2.6 Data Cleaning -- 2.6.1 Handling Missing Values -- 2.6.2 Removing Noisy Data -- 2.7 Data Transformation -- 2.7.1 Normalization -- 2.7.2 Encoding -- 2.8 Data Reduction -- 2.8.1 Attribute Feature Selection -- 2.8.2 Dimensionality Reduction -- 2.8.3 Numerosity Reduction -- 2.9 Web Scrapping Tools -- 2.10 Summary -- References -- 3 Data Analytics and Learning Techniques -- 3.1 Data Analytics Overview -- 3.2 Machine Learning Approaches -- 3.2.1 Supervised Learning -- 3.2.2 Unsupervised Learning -- 3.2.3 Reinforcement Learning -- 3.3 Deep Learning Approaches -- 3.4 Data Science Roles -- References -- 4 Data Visualization Tools and Data Modelling -- 4.1 Need of Visualization of Data -- 4.1.1 Challenges of Data Visualization -- 4.1.2 Steps of Data Visualization -- 4.2 Visualization Tools -- 4.2.1 Importance of Usage of Tools for Visualization -- 4.2.2 MS Excel -- 4.2.3 Tableau -- 4.2.4 Matplotlib -- 4.2.5 Datawrapper -- 4.2.6 Microsoft PowerBI -- 4.3 Summary -- References -- 5 Data Science in Information, Communication and Technology -- 5.1 Introduction -- 5.2 Motivation -- 5.3 Case Study in Computer Engineering -- 5.3.1 To Choose Fastest Route to Reach Destination -- 5.3.2 To Get Food Recipe Recommendations of Our Interest -- 5.3.3 The Famous Netflix Case Study.
5.3.4 Case Study of Amazon Using Data Science -- 5.3.5 Case Study on KCC (Kisaan Call Center) -- 5.4 Summary -- References -- 6 Data Science in Civil Engineering and Mechanical Engineering -- 6.1 Introduction -- 6.2 Motivation -- 6.3 Case Studies in Civil Engineering -- 6.4 Case Studies in Mechanical Engineering -- 6.5 Summary -- References -- 7 Data Science in Clinical Decision System -- 7.1 Introduction -- 7.2 Motivation -- 7.3 Case Study in Clinical Decision System -- 7.3.1 Preventive Measures for Cardiovascular Disease Using Data Science -- 7.3.2 Case Study on COVID-19 Prediction -- 7.4 Summary -- References -- 8 Conclusions -- 8.1 Conclusions -- 8.2 Open Research Issues -- 8.3 Future Outlook -- References.
Record Nr. UNINA-9910497096203321
Mahalle Parikshit Narendra  
Singapore : , : Springer Singapore Pte. Limited, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui