Blockchain for distributed systems security / / edited by Sachin S. Shetty, Charles A. Kamhoua, Laurent L. Njilla |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley-IEEE, , [2019] |
Descrizione fisica | 1 online resource (347 pages) : illustrations |
Disciplina | 005.824 |
Soggetto topico |
Blockchains (Databases)
Internet auctions - Security measures |
ISBN |
1-119-51958-6
1-119-51962-4 1-119-51959-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Foreword xiii -- Preface xv -- List of Contributors xix -- Part I Introduction to Blockchain 1 -- 1 Introduction 3 /Sachin S. Shetty, Laurent Njilla, and Charles A. Kamhoua -- 1.1 Blockchain Overview 3 -- 1.1.1 Blockchain Building Blocks 5 -- 1.1.2 Blockchain Commercial Use Cases 6 -- 1.1.3 Blockchain Military Cyber Operations Use Cases 11 -- 1.1.4 Blockchain Challenges 13 -- 1.2 Overview of the Book 16 -- 1.2.1 Chapter 2: Distributed Consensus Protocols and Algorithms 16 -- 1.2.2 Chapter 3: Overview of Attack Surfaces in Blockchain 17 -- 1.2.3 Chapter 4: Data Provenance in Cloud Storage with Blockchain 17 -- 1.2.4 Chapter 5: Blockchain-based Solution to Automotive Security and Privacy 18 -- 1.2.5 Chapter 6: Blockchain-based Dynamic Key Management for IoT-Transportation Security Protection 19 -- 1.2.6 Chapter 7: Blockchain-enabled Information Sharing Framework for Cybersecurity 19 -- 1.2.7 Chapter 8: Blockcloud Security Analysis 20 -- 1.2.8 Chapter 9: Security and Privacy of Permissioned and Permissionless Blockchain 20 -- 1.2.9 Chapter 10: Shocking Public Blockchains’ Memory with Unconfirmed Transactions-New DDoS Attacks and Countermeasures 21 -- 1.2.10 Chapter 11: Preventing Digital Currency Miners From Launching Attacks Against Mining Pools by a Reputation-Based Paradigm 21 -- 1.2.11 Chapter 12: Private Blockchain Configurations for Improved IoT Security 22 -- 1.2.12 Chapter 13: Blockchain Evaluation Platform 22 -- References 23 -- 2 Distributed Consensus Protocols and Algorithms 25 /Yang Xiao, Ning Zhang, Jin Li, Wenjing Lou, and Y. Thomas Hou -- 2.1 Introduction 25 -- 2.2 Fault-tolerant Consensus in a Distributed System 26 -- 2.2.1 The System Model 26 -- 2.2.2 BFT Consensus 28 -- 2.2.3 The OM Algorithm 29 -- 2.2.4 Practical Consensus Protocols in Distributed Computing 30 -- 2.3 The Nakamoto Consensus 37 -- 2.3.1 The Consensus Problem 38 -- 2.3.2 Network Model 38 -- 2.3.3 The Consensus Protocol 39 -- 2.4 Emerging Blockchain Consensus Algorithms 40 -- 2.4.1 Proof of Stake 41.
2.4.2 BFT-based Consensus 42 -- 2.4.3 Proof of Elapsed Time (PoET) 44 -- 2.4.4 Ripple 45 -- 2.5 Evaluation and Comparison 47 -- 2.6 Summary 47 -- Acknowledgment 49 -- References 49 -- 3 Overview of Attack Surfaces in Blockchain 51 /Muhammad Saad, Jeffrey Spaulding, Laurent Njilla, Charles A. Kamhoua, DaeHun Nyang, and Aziz Mohaisen -- 3.1 Introduction 51 -- 3.2 Overview of Blockchain and its Operations 53 -- 3.3 Blockchain Attacks 54 -- 3.3.1 Blockchain Fork 54 -- 3.3.2 Stale Blocks and Orphaned Blocks 54 -- 3.3.3 Countering Blockchain Structure Attacks 55 -- 3.4 Blockchain’s Peer-to-Peer System 55 -- 3.4.1 Selfish Mining 56 -- 3.4.2 The 51% Attack 57 -- 3.4.3 DNS Attacks 57 -- 3.4.4 DDoS Attacks 58 -- 3.4.5 Consensus Delay 59 -- 3.4.6 Countering Peer-to-Peer Attacks 59 -- 3.5 Application Oriented Attacks 60 -- 3.5.1 Blockchain Ingestion 60 -- 3.5.2 Double Spending 60 -- 3.5.3 Wallet Theft 61 -- 3.5.4 Countering Application Oriented Attacks 61 -- 3.6 Related Work 61 -- 3.7 Conclusion and Future Work 62 -- References 62 -- Part II Blockchain Solutions for Distributed System Security 67 -- 4 ProvChain: Blockchain-based Cloud Data Provenance 69 /Xueping Liang, Sachin S. Shetty, Deepak Tosh, Laurent Njilla, Charles A. Kamhoua, and Kevin Kwiat -- 4.1 Introduction 69 -- 4.2 Background and Related Work 70 -- 4.2.1 Data Provenance 70 -- 4.2.2 Data Provenance in the Cloud 71 -- 4.2.3 Blockchain 73 -- 4.2.4 Blockchain and Data Provenance 74 -- 4.3 ProvChain Architecture 75 -- 4.3.1 Architecture Overview 76 -- 4.3.2 Preliminaries and Concepts 77 -- 4.3.3 Threat Model 78 -- 4.3.4 Key Establishment 78 -- 4.4 ProvChain Implementation 79 -- 4.4.1 Provenance Data Collection and Storage 80 -- 4.4.2 Provenance Data Validation 83 -- 4.5 Evaluation 85 -- 4.5.1 Summary of ProvChain’s Capabilities 85 -- 4.5.2 Performance and Overhead 86 -- 4.6 Conclusions and Future Work 90 -- Acknowledgment 91 -- References 92 -- 5 A Blockchain-based Solution to Automotive Security and Privacy 95 /Ali Dorri, Marco Steger, Salil S. Kanhere, and Raja Jurdak. 5.1 Introduction 95 -- 5.2 An Introduction to Blockchain 98 -- 5.3 The Proposed Framework 101 -- 5.4 Applications 103 -- 5.4.1 Remote Software Updates 103 -- 5.4.2 Insurance 105 -- 5.4.3 Electric Vehicles and Smart Charging Services 105 -- 5.4.4 Car-sharing Services 106 -- 5.4.5 Supply Chain 106 -- 5.4.6 Liability 107 -- 5.5 Evaluation and Discussion 108 -- 5.5.1 Security and Privacy Analysis 108 -- 5.5.2 Performance Evaluation 109 -- 5.6 Related Works 112 -- 5.7 Conclusion 113 -- References 114 -- 6 Blockchain-based Dynamic Key Management for IoT-Transportation Security Protection 117 /Ao Lei, Yue Cao, Shihan Bao, Philip Asuquom, Haitham Cruickshank, and Zhili Sun -- 6.1 Introduction 117 -- 6.2 Use Case 119 -- 6.2.1 Message Handover in VCS 120 -- 6.3 Blockchain-based Dynamic Key Management Scheme 124 -- 6.4 Dynamic Transaction Collection Algorithm 125 -- 6.4.1 Transaction Format 125 -- 6.4.2 Block Format 127 -- 6.5 Time Composition 128 -- 6.5.1 Dynamic Transaction Collection Algorithm 129 -- 6.6 Performance Evaluation 130 -- 6.6.1 Experimental Assumptions and Setup 130 -- 6.6.2 Processing Time of Cryptographic Schemes 132 -- 6.6.3 Handover Time 133 -- 6.6.4 Performance of the Dynamic Transaction Collection Algorithm 135 -- 6.7 Conclusion and Future Work 138 -- References 140 -- 7 Blockchain-enabled Information Sharing Framework for Cybersecurity 143 /Abdulhamid Adebayo, Danda B. Rawat, Laurent Njilla, and Charles A. Kamhoua -- 7.1 Introduction 143 -- 7.2 The BIS Framework 145 -- 7.3 Transactions on BIS 146 -- 7.4 Cyberattack Detection and Information Sharing 147 -- 7.5 Cross-group Attack Game in Blockchain-based BIS Framework: One-way Attack 149 -- 7.6 Cross-group Attack Game in Blockchain-based BIS Framework: Two-way Attack 151 -- 7.7 Stackelberg Game for Cyberattack and Defense Analysis 152 -- 7.8 Conclusion 156 -- References 157 -- Part III Blockchain Security 159 -- 8 Blockcloud Security Analysis 161 /Deepak Tosh, Sachin S. Shetty, Xueping Liang, Laurent Njilla, Charles A. Kamhoua, and Kevin Kwiat. 8.1 Introduction 161 -- 8.2 Blockchain Consensus Mechanisms 163 -- 8.2.1 Proof-of-Work (PoW) Consensus 164 -- 8.2.2 Proof-of-Stake (PoS) Consensus 165 -- 8.2.3 Proof-of-Activity (PoA) Consensus 167 -- 8.2.4 Practical Byzantine Fault Tolerance (PBFT) Consensus 168 -- 8.2.5 Proof-of-Elapsed-Time (PoET) Consensus 169 -- 8.2.6 Proof-of-Luck (PoL) Consensus 170 -- 8.2.7 Proof-of-Space (PoSpace) Consensus 170 -- 8.3 Blockchain Cloud and Associated Vulnerabilities 171 -- 8.3.1 Blockchain and Cloud Security 171 -- 8.3.2 Blockchain Cloud Vulnerabilities 174 -- 8.4 System Model 179 -- 8.5 Augmenting with Extra Hash Power 180 -- 8.6 Disruptive Attack Strategy Analysis 181 -- 8.6.1 Proportional Reward 181 -- 8.6.2 Pay-per-last N-shares (PPLNS) Reward 184 -- 8.7 Simulation Results and Discussion 187 -- 8.8 Conclusions and Future Directions 188 -- Acknowledgment 190 -- References 190 -- 9 Permissioned and Permissionless Blockchains 193 /Andrew Miller -- 9.1 Introduction 193 -- 9.2 On Choosing Your Peers Wisely 194 -- 9.3 Committee Election Mechanisms 196 -- 9.4 Privacy in Permissioned and Permissionless Blockchains 199 -- 9.5 Conclusion 201 -- References 202 -- 10 Shocking Blockchain’s Memory with Unconfirmed Transactions: New DDoS Attacks and Countermeasures 205 /Muhammad Saad, Laurent Njilla, Charles A. Kamhoua, Kevin Kwiat, and Aziz Mohaisen -- 10.1 Introduction 205 -- 10.2 Related Work 207 -- 10.3 An Overview of Blockchain and Lifecycle 208 -- 10.3.1 DDoS Attack on Mempools 210 -- 10.3.2 Data Collection for Evaluation 210 -- 10.4 Threat Model 211 -- 10.5 Attack Procedure 212 -- 10.5.1 The Distribution Phase 214 -- 10.5.2 The Attack Phase 214 -- 10.5.3 Attack Cost 214 -- 10.6 Countering the Mempool Attack 215 -- 10.6.1 Fee-based Mempool Design 216 -- 10.6.2 Age-based Countermeasures 221 -- 10.7 Experiment and Results 224 -- 10.8 Conclusion 227 -- References 227 -- 11 Preventing Digital Currency Miners from Launching Attacks Against Mining Pools Using a Reputation-based Paradigm 233 /Mehrdad Nojoumian, Arash Golchubian, Laurent Njilla, Kevin Kwiat, and Charles A. Kamhoua. 11.1 Introduction 233 -- 11.2 Preliminaries 234 -- 11.2.1 Digital Currencies: Terminologies and Mechanics 234 -- 11.2.2 Game Theory: Basic Notions and Definitions 235 -- 11.3 Literature Review 236 -- 11.4 Reputation-based Mining Model and Setting 238 -- 11.5 Mining in a Reputation-based Model 240 -- 11.5.1 Prevention of the Re-entry Attack 240 -- 11.5.2 Technical Discussion on Detection Mechanisms 241 -- 11.5.3 Colluding Miner’s Dilemma 243 -- 11.5.4 Repeated Mining Game 244 -- 11.5.5 Colluding Miners’ Preferences 245 -- 11.5.6 Colluding Miners’ Utilities 245 -- 11.6 Evaluation of Our Model Using Game-theoretical Analyses 246 -- 11.7 Concluding Remarks 248 -- Acknowledgment 249 -- References 249 -- Part IV Blockchain Implementation 253 -- 12 Private Blockchain Configurations for Improved IoT Security 255 /Adriaan Larmuseau and Devu Manikantan Shila -- 12.1 Introduction 255 -- 12.2 Blockchain-enabled Gateway 257 -- 12.2.1 Advantages 257 -- 12.2.2 Limitations 258 -- 12.2.3 Private Ethereum Gateways for Access Control 259 -- 12.2.4 Evaluation 262 -- 12.3 Blockchain-enabled Smart End Devices 263 -- 12.3.1 Advantages 263 -- 12.3.2 Limitations 264 -- 12.3.3 Private Hyperledger Blockchain-enabled Smart Sensor Devices 264 -- 12.3.4 Evaluation 269 -- 12.4 Related Work 270 -- 12.5 Conclusion 271 -- References 271 -- 13 Blockchain Evaluation Platform 275 /Peter Foytik and Sachin S. Shetty -- 13.1 Introduction 275 -- 13.1.1 Architecture 276 -- 13.1.2 Distributed Ledger 276 -- 13.1.3 Participating Nodes 277 -- 13.1.4 Communication 277 -- 13.1.5 Consensus 278 -- 13.2 Hyperledger Fabric 279 -- 13.2.1 Node Types 279 -- 13.2.2 Docker 280 -- 13.2.3 Hyperledger Fabric Example Exercise 281 -- 13.2.4 Running the First Network 281 -- 13.2.5 Running the Kafka Network 286 -- 13.3 Measures of Performance 291 -- 13.3.1 Performance Metrics With the Proof-of-Stake Simulation 293 -- 13.3.2 Performance Measures With the Hyperledger Fabric Example 296 -- 13.4 Simple Blockchain Simulation 300. 13.5 Blockchain Simulation Introduction 303 -- 13.5.1 Methodology 304 -- 13.5.2 Simulation Integration With Live Blockchain 304 -- 13.5.3 Simulation Integration With Simulated Blockchain 306 -- 13.5.4 Verification and Validation 306 -- 13.5.5 Example 307 -- 13.6 Conclusion and Future Work 309 -- References 310 -- 14 Summary and Future Work 311 /Sachin S. Shetty, Laurent Njilla, and Charles A. Kamhoua -- 14.1 Introduction 311 -- 14.2 Blockchain and Cloud Security 312 -- 14.3 Blockchain and IoT Security 312 -- 14.4 Blockchain Security and Privacy 314 -- 14.5 Experimental Testbed and Performance Evaluation 316 -- 14.6 The Future 316 -- Index 319. |
Record Nr. | UNINA-9910555114003321 |
Hoboken, New Jersey : , : Wiley-IEEE, , [2019] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Blockchain for distributed systems security / / edited by Sachin S. Shetty, Charles A. Kamhoua, Laurent L. Njilla |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley-IEEE, , [2019] |
Descrizione fisica | 1 online resource (347 pages) : illustrations |
Disciplina | 005.824 |
Soggetto topico |
Blockchains (Databases)
Internet auctions - Security measures |
ISBN |
1-119-51958-6
1-119-51962-4 1-119-51959-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Foreword xiii -- Preface xv -- List of Contributors xix -- Part I Introduction to Blockchain 1 -- 1 Introduction 3 /Sachin S. Shetty, Laurent Njilla, and Charles A. Kamhoua -- 1.1 Blockchain Overview 3 -- 1.1.1 Blockchain Building Blocks 5 -- 1.1.2 Blockchain Commercial Use Cases 6 -- 1.1.3 Blockchain Military Cyber Operations Use Cases 11 -- 1.1.4 Blockchain Challenges 13 -- 1.2 Overview of the Book 16 -- 1.2.1 Chapter 2: Distributed Consensus Protocols and Algorithms 16 -- 1.2.2 Chapter 3: Overview of Attack Surfaces in Blockchain 17 -- 1.2.3 Chapter 4: Data Provenance in Cloud Storage with Blockchain 17 -- 1.2.4 Chapter 5: Blockchain-based Solution to Automotive Security and Privacy 18 -- 1.2.5 Chapter 6: Blockchain-based Dynamic Key Management for IoT-Transportation Security Protection 19 -- 1.2.6 Chapter 7: Blockchain-enabled Information Sharing Framework for Cybersecurity 19 -- 1.2.7 Chapter 8: Blockcloud Security Analysis 20 -- 1.2.8 Chapter 9: Security and Privacy of Permissioned and Permissionless Blockchain 20 -- 1.2.9 Chapter 10: Shocking Public Blockchains’ Memory with Unconfirmed Transactions-New DDoS Attacks and Countermeasures 21 -- 1.2.10 Chapter 11: Preventing Digital Currency Miners From Launching Attacks Against Mining Pools by a Reputation-Based Paradigm 21 -- 1.2.11 Chapter 12: Private Blockchain Configurations for Improved IoT Security 22 -- 1.2.12 Chapter 13: Blockchain Evaluation Platform 22 -- References 23 -- 2 Distributed Consensus Protocols and Algorithms 25 /Yang Xiao, Ning Zhang, Jin Li, Wenjing Lou, and Y. Thomas Hou -- 2.1 Introduction 25 -- 2.2 Fault-tolerant Consensus in a Distributed System 26 -- 2.2.1 The System Model 26 -- 2.2.2 BFT Consensus 28 -- 2.2.3 The OM Algorithm 29 -- 2.2.4 Practical Consensus Protocols in Distributed Computing 30 -- 2.3 The Nakamoto Consensus 37 -- 2.3.1 The Consensus Problem 38 -- 2.3.2 Network Model 38 -- 2.3.3 The Consensus Protocol 39 -- 2.4 Emerging Blockchain Consensus Algorithms 40 -- 2.4.1 Proof of Stake 41.
2.4.2 BFT-based Consensus 42 -- 2.4.3 Proof of Elapsed Time (PoET) 44 -- 2.4.4 Ripple 45 -- 2.5 Evaluation and Comparison 47 -- 2.6 Summary 47 -- Acknowledgment 49 -- References 49 -- 3 Overview of Attack Surfaces in Blockchain 51 /Muhammad Saad, Jeffrey Spaulding, Laurent Njilla, Charles A. Kamhoua, DaeHun Nyang, and Aziz Mohaisen -- 3.1 Introduction 51 -- 3.2 Overview of Blockchain and its Operations 53 -- 3.3 Blockchain Attacks 54 -- 3.3.1 Blockchain Fork 54 -- 3.3.2 Stale Blocks and Orphaned Blocks 54 -- 3.3.3 Countering Blockchain Structure Attacks 55 -- 3.4 Blockchain’s Peer-to-Peer System 55 -- 3.4.1 Selfish Mining 56 -- 3.4.2 The 51% Attack 57 -- 3.4.3 DNS Attacks 57 -- 3.4.4 DDoS Attacks 58 -- 3.4.5 Consensus Delay 59 -- 3.4.6 Countering Peer-to-Peer Attacks 59 -- 3.5 Application Oriented Attacks 60 -- 3.5.1 Blockchain Ingestion 60 -- 3.5.2 Double Spending 60 -- 3.5.3 Wallet Theft 61 -- 3.5.4 Countering Application Oriented Attacks 61 -- 3.6 Related Work 61 -- 3.7 Conclusion and Future Work 62 -- References 62 -- Part II Blockchain Solutions for Distributed System Security 67 -- 4 ProvChain: Blockchain-based Cloud Data Provenance 69 /Xueping Liang, Sachin S. Shetty, Deepak Tosh, Laurent Njilla, Charles A. Kamhoua, and Kevin Kwiat -- 4.1 Introduction 69 -- 4.2 Background and Related Work 70 -- 4.2.1 Data Provenance 70 -- 4.2.2 Data Provenance in the Cloud 71 -- 4.2.3 Blockchain 73 -- 4.2.4 Blockchain and Data Provenance 74 -- 4.3 ProvChain Architecture 75 -- 4.3.1 Architecture Overview 76 -- 4.3.2 Preliminaries and Concepts 77 -- 4.3.3 Threat Model 78 -- 4.3.4 Key Establishment 78 -- 4.4 ProvChain Implementation 79 -- 4.4.1 Provenance Data Collection and Storage 80 -- 4.4.2 Provenance Data Validation 83 -- 4.5 Evaluation 85 -- 4.5.1 Summary of ProvChain’s Capabilities 85 -- 4.5.2 Performance and Overhead 86 -- 4.6 Conclusions and Future Work 90 -- Acknowledgment 91 -- References 92 -- 5 A Blockchain-based Solution to Automotive Security and Privacy 95 /Ali Dorri, Marco Steger, Salil S. Kanhere, and Raja Jurdak. 5.1 Introduction 95 -- 5.2 An Introduction to Blockchain 98 -- 5.3 The Proposed Framework 101 -- 5.4 Applications 103 -- 5.4.1 Remote Software Updates 103 -- 5.4.2 Insurance 105 -- 5.4.3 Electric Vehicles and Smart Charging Services 105 -- 5.4.4 Car-sharing Services 106 -- 5.4.5 Supply Chain 106 -- 5.4.6 Liability 107 -- 5.5 Evaluation and Discussion 108 -- 5.5.1 Security and Privacy Analysis 108 -- 5.5.2 Performance Evaluation 109 -- 5.6 Related Works 112 -- 5.7 Conclusion 113 -- References 114 -- 6 Blockchain-based Dynamic Key Management for IoT-Transportation Security Protection 117 /Ao Lei, Yue Cao, Shihan Bao, Philip Asuquom, Haitham Cruickshank, and Zhili Sun -- 6.1 Introduction 117 -- 6.2 Use Case 119 -- 6.2.1 Message Handover in VCS 120 -- 6.3 Blockchain-based Dynamic Key Management Scheme 124 -- 6.4 Dynamic Transaction Collection Algorithm 125 -- 6.4.1 Transaction Format 125 -- 6.4.2 Block Format 127 -- 6.5 Time Composition 128 -- 6.5.1 Dynamic Transaction Collection Algorithm 129 -- 6.6 Performance Evaluation 130 -- 6.6.1 Experimental Assumptions and Setup 130 -- 6.6.2 Processing Time of Cryptographic Schemes 132 -- 6.6.3 Handover Time 133 -- 6.6.4 Performance of the Dynamic Transaction Collection Algorithm 135 -- 6.7 Conclusion and Future Work 138 -- References 140 -- 7 Blockchain-enabled Information Sharing Framework for Cybersecurity 143 /Abdulhamid Adebayo, Danda B. Rawat, Laurent Njilla, and Charles A. Kamhoua -- 7.1 Introduction 143 -- 7.2 The BIS Framework 145 -- 7.3 Transactions on BIS 146 -- 7.4 Cyberattack Detection and Information Sharing 147 -- 7.5 Cross-group Attack Game in Blockchain-based BIS Framework: One-way Attack 149 -- 7.6 Cross-group Attack Game in Blockchain-based BIS Framework: Two-way Attack 151 -- 7.7 Stackelberg Game for Cyberattack and Defense Analysis 152 -- 7.8 Conclusion 156 -- References 157 -- Part III Blockchain Security 159 -- 8 Blockcloud Security Analysis 161 /Deepak Tosh, Sachin S. Shetty, Xueping Liang, Laurent Njilla, Charles A. Kamhoua, and Kevin Kwiat. 8.1 Introduction 161 -- 8.2 Blockchain Consensus Mechanisms 163 -- 8.2.1 Proof-of-Work (PoW) Consensus 164 -- 8.2.2 Proof-of-Stake (PoS) Consensus 165 -- 8.2.3 Proof-of-Activity (PoA) Consensus 167 -- 8.2.4 Practical Byzantine Fault Tolerance (PBFT) Consensus 168 -- 8.2.5 Proof-of-Elapsed-Time (PoET) Consensus 169 -- 8.2.6 Proof-of-Luck (PoL) Consensus 170 -- 8.2.7 Proof-of-Space (PoSpace) Consensus 170 -- 8.3 Blockchain Cloud and Associated Vulnerabilities 171 -- 8.3.1 Blockchain and Cloud Security 171 -- 8.3.2 Blockchain Cloud Vulnerabilities 174 -- 8.4 System Model 179 -- 8.5 Augmenting with Extra Hash Power 180 -- 8.6 Disruptive Attack Strategy Analysis 181 -- 8.6.1 Proportional Reward 181 -- 8.6.2 Pay-per-last N-shares (PPLNS) Reward 184 -- 8.7 Simulation Results and Discussion 187 -- 8.8 Conclusions and Future Directions 188 -- Acknowledgment 190 -- References 190 -- 9 Permissioned and Permissionless Blockchains 193 /Andrew Miller -- 9.1 Introduction 193 -- 9.2 On Choosing Your Peers Wisely 194 -- 9.3 Committee Election Mechanisms 196 -- 9.4 Privacy in Permissioned and Permissionless Blockchains 199 -- 9.5 Conclusion 201 -- References 202 -- 10 Shocking Blockchain’s Memory with Unconfirmed Transactions: New DDoS Attacks and Countermeasures 205 /Muhammad Saad, Laurent Njilla, Charles A. Kamhoua, Kevin Kwiat, and Aziz Mohaisen -- 10.1 Introduction 205 -- 10.2 Related Work 207 -- 10.3 An Overview of Blockchain and Lifecycle 208 -- 10.3.1 DDoS Attack on Mempools 210 -- 10.3.2 Data Collection for Evaluation 210 -- 10.4 Threat Model 211 -- 10.5 Attack Procedure 212 -- 10.5.1 The Distribution Phase 214 -- 10.5.2 The Attack Phase 214 -- 10.5.3 Attack Cost 214 -- 10.6 Countering the Mempool Attack 215 -- 10.6.1 Fee-based Mempool Design 216 -- 10.6.2 Age-based Countermeasures 221 -- 10.7 Experiment and Results 224 -- 10.8 Conclusion 227 -- References 227 -- 11 Preventing Digital Currency Miners from Launching Attacks Against Mining Pools Using a Reputation-based Paradigm 233 /Mehrdad Nojoumian, Arash Golchubian, Laurent Njilla, Kevin Kwiat, and Charles A. Kamhoua. 11.1 Introduction 233 -- 11.2 Preliminaries 234 -- 11.2.1 Digital Currencies: Terminologies and Mechanics 234 -- 11.2.2 Game Theory: Basic Notions and Definitions 235 -- 11.3 Literature Review 236 -- 11.4 Reputation-based Mining Model and Setting 238 -- 11.5 Mining in a Reputation-based Model 240 -- 11.5.1 Prevention of the Re-entry Attack 240 -- 11.5.2 Technical Discussion on Detection Mechanisms 241 -- 11.5.3 Colluding Miner’s Dilemma 243 -- 11.5.4 Repeated Mining Game 244 -- 11.5.5 Colluding Miners’ Preferences 245 -- 11.5.6 Colluding Miners’ Utilities 245 -- 11.6 Evaluation of Our Model Using Game-theoretical Analyses 246 -- 11.7 Concluding Remarks 248 -- Acknowledgment 249 -- References 249 -- Part IV Blockchain Implementation 253 -- 12 Private Blockchain Configurations for Improved IoT Security 255 /Adriaan Larmuseau and Devu Manikantan Shila -- 12.1 Introduction 255 -- 12.2 Blockchain-enabled Gateway 257 -- 12.2.1 Advantages 257 -- 12.2.2 Limitations 258 -- 12.2.3 Private Ethereum Gateways for Access Control 259 -- 12.2.4 Evaluation 262 -- 12.3 Blockchain-enabled Smart End Devices 263 -- 12.3.1 Advantages 263 -- 12.3.2 Limitations 264 -- 12.3.3 Private Hyperledger Blockchain-enabled Smart Sensor Devices 264 -- 12.3.4 Evaluation 269 -- 12.4 Related Work 270 -- 12.5 Conclusion 271 -- References 271 -- 13 Blockchain Evaluation Platform 275 /Peter Foytik and Sachin S. Shetty -- 13.1 Introduction 275 -- 13.1.1 Architecture 276 -- 13.1.2 Distributed Ledger 276 -- 13.1.3 Participating Nodes 277 -- 13.1.4 Communication 277 -- 13.1.5 Consensus 278 -- 13.2 Hyperledger Fabric 279 -- 13.2.1 Node Types 279 -- 13.2.2 Docker 280 -- 13.2.3 Hyperledger Fabric Example Exercise 281 -- 13.2.4 Running the First Network 281 -- 13.2.5 Running the Kafka Network 286 -- 13.3 Measures of Performance 291 -- 13.3.1 Performance Metrics With the Proof-of-Stake Simulation 293 -- 13.3.2 Performance Measures With the Hyperledger Fabric Example 296 -- 13.4 Simple Blockchain Simulation 300. 13.5 Blockchain Simulation Introduction 303 -- 13.5.1 Methodology 304 -- 13.5.2 Simulation Integration With Live Blockchain 304 -- 13.5.3 Simulation Integration With Simulated Blockchain 306 -- 13.5.4 Verification and Validation 306 -- 13.5.5 Example 307 -- 13.6 Conclusion and Future Work 309 -- References 310 -- 14 Summary and Future Work 311 /Sachin S. Shetty, Laurent Njilla, and Charles A. Kamhoua -- 14.1 Introduction 311 -- 14.2 Blockchain and Cloud Security 312 -- 14.3 Blockchain and IoT Security 312 -- 14.4 Blockchain Security and Privacy 314 -- 14.5 Experimental Testbed and Performance Evaluation 316 -- 14.6 The Future 316 -- Index 319. |
Record Nr. | UNINA-9910676564003321 |
Hoboken, New Jersey : , : Wiley-IEEE, , [2019] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Dynamic Spectrum Access for Wireless Networks / / by Danda B. Rawat, Min Song, Sachin Shetty |
Autore | Rawat Danda B |
Edizione | [1st ed. 2015.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015 |
Descrizione fisica | 1 online resource (83 p.) |
Disciplina | 621.384 |
Collana | SpringerBriefs in Electrical and Computer Engineering |
Soggetto topico |
Computer communication systems
Electrical engineering Computers Computer Communication Networks Communications Engineering, Networks Information Systems and Communication Service |
ISBN | 3-319-15299-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | An Overview of Cognitive Radio Networks -- Resource Allocation in Spectrum Underlay Cognitive Radio Networks -- Cloud-integrated Geolocation-aware Dynamic Spectrum Access -- Resource Allocation for Cognitive Radio Enabled Vehicular Network Users. |
Record Nr. | UNINA-9910299244503321 |
Rawat Danda B | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Modeling and design of secure Internet of things / / edited by Charles A. Kamhoua, Laurent L. Njilla, Alexander Kott, Sachin Shetty |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley-IEEE Press, , [2020] |
Descrizione fisica | 1 online resource (697 pages) |
Disciplina | 005.8 |
Collana | IEEE press |
Soggetto topico | Internet of things - Security measures |
ISBN |
1-119-59339-5
1-119-59337-9 1-119-59338-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
About the Editors ix -- List of Contributors xiii -- Foreword xix -- Preface xxiii -- 1 Introduction 1 /Charles A. Kamhoua, Laurent L. Njilla, Alexander Kott, and Sachin Shetty -- Part I Game Theory for Cyber Deception 27 -- 2 Game-Theoretic Analysis of Cyber Deception: Evidence-Based Strategies and Dynamic Risk Mitigation 29 /Tao Zhang, Linan Huang, Jeffrey Pawlick, and Quanyan Zhu -- 3 A Hypergame-Based Defense Strategy Toward Cyber Deception in Internet of Battlefield Things (IoBT) 59 /Bowei Xi and Charles A. Kamhoua -- 4 Cooperative Spectrum Sharing and Trust Management in IoT Networks 79 /Fatemeh Afghah, Alireza Shamsoshoara, Laurent L. Njilla, and Charles A. Kamhoua -- 5 Adaptation and Deception in Adversarial Cyber Operations 111 /George Cybenko -- 6 On Development of a Game-Theoretic Model for Deception-Based Security 123 /Satyaki Nan, Swastik Brahma, Charles A. Kamhoua, and Laurent L. Njilla -- 7 Deception for Cyber Adversaries: Status, Challenges, and Perspectives 141 /Abdullah Alshammari, Danda B. Rawat, Moses Garuba, Charles A. Kamhoua, and Laurent L. Njilla -- Part II IoT Security Modeling and Analysis 161 -- 8 Cyber-Physical Vulnerability Analysis of IoT Applications Using Multi-Modeling 163 /Ted Bapty, Abhishek Dubey, and Janos Sztipanovits -- 9 Securing Smart Cities: Implications and Challenges 185 /Ioannis Agadakos, Prashant Anantharaman, Gabriela F. Ciocarlie, Bogdan Copos, Michael Emmi, Tancrd̈e Lepoint, Ulf Lindqvist, Michael Locasto, and Liwei Song -- 10 Modeling and Analysis of Integrated Proactive Defense Mechanisms for Internet of Things 217 /Mengmeng Ge, Jin-Hee Cho, Bilal Ishfaq, and Dong Seong Kim -- 11 Addressing Polymorphic Advanced Threats in Internet of Things Networks by Cross-Layer Profiling 249 /Hisham Alasmary, Afsah Anwar, Laurent L. Njilla, Charles A. Kamhoua, and Aziz Mohaisen -- 12 Analysis of Stepping-Stone Attacks in Internet of Things Using Dynamic Vulnerability Graphs 273 /Marco Gamarra, Sachin Shetty, Oscar Gonzalez, David M. Nicol, Charles A. Kamhoua, and Laurent L. Njilla.
13 Anomaly Behavior Analysis of IoT Protocols 295 /Pratik Satam, Shalaka Satam, Salim Hariri, and Amany Alshawi -- 14 Dynamic Cyber Deception Using Partially Observable Monte-Carlo Planning Framework 331 /Md Ali Reza Al Amin, Sachin Shetty, Laurent L. Njilla, Deepak K. Tosh, and Charles A. Kamhoua -- 15 A Coding Theoretic View of Secure State Reconstruction 357 /Suhas Diggavi and Paulo Tabuada -- 16 Governance for the Internet of Things: Striving Toward Resilience 371 /S. E. Galaitsi, Benjamin D. Trump, and Igor Linkov -- Part III IoT Security Design 383 -- 17 Secure and Resilient Control of IoT-Based 3D Printers 385 /Zhiheng Xu and Quanyan Zhu -- 18 Proactive Defense Against Security Threats on IoT Hardware 407 /Qiaoyan Yu, Zhiming Zhang, and Jaya Dofe -- 19 IoT Device Attestation: From a Cross-Layer Perspective 435 /Orlando Arias, Fahim Rahman, Mark Tehranipoor, and Yier Jin -- 20 Software-Defined Networking for Cyber Resilience in Industrial Internet of Things (IIoT) 453 /Kamrul Hasan, Sachin Shetty, Amin Hassanzadeh, Malek Ben Salem, and Jay Chen -- 21 Leverage SDN for Cyber-Security Deception in Internet of Things 479 /Yaoqing Liu, Garegin Grigoryan, Charles A. Kamhoua, and Laurent L. Njilla -- 22 Decentralized Access Control for IoT Based on Blockchain and Smart Contract 505 /Ronghua Xu, Yu Chen, and Erik Blasch -- 23 Intent as a Secure Design Primitive 529 /Prashant Anantharaman, J. Peter Brady, Ira Ray Jenkins, Vijay H. Kothari, Michael C. Millian, Kartik Palani, Kirti V. Rathore, Jason Reeves, Rebecca Shapiro, Syed H. Tanveer, Sergey Bratus, and Sean W. Smith -- 24 A Review of Moving Target Defense Mechanisms for Internet of Things Applications 563 /Nico Saputro, Samet Tonyali, Abdullah Aydeger, Kemal Akkaya, Mohammad A. Rahman, and Selcuk Uluagac -- 25 Toward Robust Outlier Detector for Internet of Things Applications 615 /Raj Mani Shukla and Shamik Sengupta -- 26 Summary and Future Work 635 /Charles A. Kamhoua, Laurent L. Njilla, Alexander Kott, and Sachin Shetty. Index 647. |
Record Nr. | UNINA-9910555075203321 |
Hoboken, New Jersey : , : Wiley-IEEE Press, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Modeling and design of secure Internet of things / / edited by Charles A. Kamhoua, Laurent L. Njilla, Alexander Kott, Sachin Shetty |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley-IEEE Press, , [2020] |
Descrizione fisica | 1 online resource (697 pages) |
Disciplina | 005.8 |
Collana | IEEE press |
Soggetto topico | Internet of things - Security measures |
ISBN |
1-119-59339-5
1-119-59337-9 1-119-59338-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
About the Editors ix -- List of Contributors xiii -- Foreword xix -- Preface xxiii -- 1 Introduction 1 /Charles A. Kamhoua, Laurent L. Njilla, Alexander Kott, and Sachin Shetty -- Part I Game Theory for Cyber Deception 27 -- 2 Game-Theoretic Analysis of Cyber Deception: Evidence-Based Strategies and Dynamic Risk Mitigation 29 /Tao Zhang, Linan Huang, Jeffrey Pawlick, and Quanyan Zhu -- 3 A Hypergame-Based Defense Strategy Toward Cyber Deception in Internet of Battlefield Things (IoBT) 59 /Bowei Xi and Charles A. Kamhoua -- 4 Cooperative Spectrum Sharing and Trust Management in IoT Networks 79 /Fatemeh Afghah, Alireza Shamsoshoara, Laurent L. Njilla, and Charles A. Kamhoua -- 5 Adaptation and Deception in Adversarial Cyber Operations 111 /George Cybenko -- 6 On Development of a Game-Theoretic Model for Deception-Based Security 123 /Satyaki Nan, Swastik Brahma, Charles A. Kamhoua, and Laurent L. Njilla -- 7 Deception for Cyber Adversaries: Status, Challenges, and Perspectives 141 /Abdullah Alshammari, Danda B. Rawat, Moses Garuba, Charles A. Kamhoua, and Laurent L. Njilla -- Part II IoT Security Modeling and Analysis 161 -- 8 Cyber-Physical Vulnerability Analysis of IoT Applications Using Multi-Modeling 163 /Ted Bapty, Abhishek Dubey, and Janos Sztipanovits -- 9 Securing Smart Cities: Implications and Challenges 185 /Ioannis Agadakos, Prashant Anantharaman, Gabriela F. Ciocarlie, Bogdan Copos, Michael Emmi, Tancrd̈e Lepoint, Ulf Lindqvist, Michael Locasto, and Liwei Song -- 10 Modeling and Analysis of Integrated Proactive Defense Mechanisms for Internet of Things 217 /Mengmeng Ge, Jin-Hee Cho, Bilal Ishfaq, and Dong Seong Kim -- 11 Addressing Polymorphic Advanced Threats in Internet of Things Networks by Cross-Layer Profiling 249 /Hisham Alasmary, Afsah Anwar, Laurent L. Njilla, Charles A. Kamhoua, and Aziz Mohaisen -- 12 Analysis of Stepping-Stone Attacks in Internet of Things Using Dynamic Vulnerability Graphs 273 /Marco Gamarra, Sachin Shetty, Oscar Gonzalez, David M. Nicol, Charles A. Kamhoua, and Laurent L. Njilla.
13 Anomaly Behavior Analysis of IoT Protocols 295 /Pratik Satam, Shalaka Satam, Salim Hariri, and Amany Alshawi -- 14 Dynamic Cyber Deception Using Partially Observable Monte-Carlo Planning Framework 331 /Md Ali Reza Al Amin, Sachin Shetty, Laurent L. Njilla, Deepak K. Tosh, and Charles A. Kamhoua -- 15 A Coding Theoretic View of Secure State Reconstruction 357 /Suhas Diggavi and Paulo Tabuada -- 16 Governance for the Internet of Things: Striving Toward Resilience 371 /S. E. Galaitsi, Benjamin D. Trump, and Igor Linkov -- Part III IoT Security Design 383 -- 17 Secure and Resilient Control of IoT-Based 3D Printers 385 /Zhiheng Xu and Quanyan Zhu -- 18 Proactive Defense Against Security Threats on IoT Hardware 407 /Qiaoyan Yu, Zhiming Zhang, and Jaya Dofe -- 19 IoT Device Attestation: From a Cross-Layer Perspective 435 /Orlando Arias, Fahim Rahman, Mark Tehranipoor, and Yier Jin -- 20 Software-Defined Networking for Cyber Resilience in Industrial Internet of Things (IIoT) 453 /Kamrul Hasan, Sachin Shetty, Amin Hassanzadeh, Malek Ben Salem, and Jay Chen -- 21 Leverage SDN for Cyber-Security Deception in Internet of Things 479 /Yaoqing Liu, Garegin Grigoryan, Charles A. Kamhoua, and Laurent L. Njilla -- 22 Decentralized Access Control for IoT Based on Blockchain and Smart Contract 505 /Ronghua Xu, Yu Chen, and Erik Blasch -- 23 Intent as a Secure Design Primitive 529 /Prashant Anantharaman, J. Peter Brady, Ira Ray Jenkins, Vijay H. Kothari, Michael C. Millian, Kartik Palani, Kirti V. Rathore, Jason Reeves, Rebecca Shapiro, Syed H. Tanveer, Sergey Bratus, and Sean W. Smith -- 24 A Review of Moving Target Defense Mechanisms for Internet of Things Applications 563 /Nico Saputro, Samet Tonyali, Abdullah Aydeger, Kemal Akkaya, Mohammad A. Rahman, and Selcuk Uluagac -- 25 Toward Robust Outlier Detector for Internet of Things Applications 615 /Raj Mani Shukla and Shamik Sengupta -- 26 Summary and Future Work 635 /Charles A. Kamhoua, Laurent L. Njilla, Alexander Kott, and Sachin Shetty. Index 647. |
Record Nr. | UNINA-9910830652403321 |
Hoboken, New Jersey : , : Wiley-IEEE Press, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|