Advanced Data Mining and Applications : 20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3–5, 2024, Proceedings, Part VI / / edited by Quan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma |
Autore | Sheng Quan Z |
Edizione | [1st ed. 2025.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
Descrizione fisica | 1 online resource (398 pages) |
Disciplina | 006.312 |
Altri autori (Persone) |
DobbieGill
JiangJing ZhangXuyun ZhangWei Emma ManolopoulosYannis WuJia MansoorWathiq MaCongbo |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Data mining
Artificial intelligence Application software Computer systems Education - Data processing Computer vision Data Mining and Knowledge Discovery Artificial Intelligence Computer and Information Systems Applications Computer System Implementation Computers and Education Computer Vision |
ISBN | 9789819608508 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996636772303316 |
Sheng Quan Z | ||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advanced Data Mining and Applications : 20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3–5, 2024, Proceedings, Part V / / edited by Quan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma |
Autore | Sheng Quan Z |
Edizione | [1st ed. 2025.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
Descrizione fisica | 1 online resource (394 pages) |
Disciplina | 006.312 |
Altri autori (Persone) |
DobbieGill
JiangJing ZhangXuyun ZhangWei Emma ManolopoulosYannis WuJia MansoorWathiq MaCongbo |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Data mining
Artificial intelligence Application software Computer systems Education - Data processing Computer vision Data Mining and Knowledge Discovery Artificial Intelligence Computer and Information Systems Applications Computer System Implementation Computers and Education Computer Vision |
ISBN |
9789819608478
9819608473 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996635672603316 |
Sheng Quan Z | ||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advanced Data Mining and Applications : 20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3–5, 2024, Proceedings, Part II / / edited by Quan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma |
Autore | Sheng Quan Z |
Edizione | [1st ed. 2025.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
Descrizione fisica | 1 online resource (447 pages) |
Disciplina | 006.312 |
Altri autori (Persone) |
DobbieGill
JiangJing ZhangXuyun ZhangWei Emma ManolopoulosYannis WuJia MansoorWathiq MaCongbo |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Data mining
Artificial intelligence Application software Computer systems Education - Data processing Computer vision Data Mining and Knowledge Discovery Artificial Intelligence Computer and Information Systems Applications Computer System Implementation Computers and Education Computer Vision |
ISBN |
9789819608140
9819608147 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996635669303316 |
Sheng Quan Z | ||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advanced Data Mining and Applications : 20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3–5, 2024, Proceedings, Part IV / / edited by Quan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma |
Autore | Sheng Quan Z |
Edizione | [1st ed. 2025.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
Descrizione fisica | 1 online resource (437 pages) |
Disciplina | 006.312 |
Altri autori (Persone) |
DobbieGill
JiangJing ZhangXuyun ZhangWei Emma ManolopoulosYannis WuJia MansoorWathiq MaCongbo |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Data mining
Artificial intelligence Application software Computer systems Education - Data processing Computer vision Data Mining and Knowledge Discovery Artificial Intelligence Computer and Information Systems Applications Computer System Implementation Computers and Education Computer Vision |
ISBN |
9789819608409
9819608406 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996635667603316 |
Sheng Quan Z | ||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advanced Data Mining and Applications : 20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3–5, 2024, Proceedings, Part III / / edited by Quan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma |
Autore | Sheng Quan Z |
Edizione | [1st ed. 2025.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
Descrizione fisica | 1 online resource (465 pages) |
Disciplina | 006.312 |
Altri autori (Persone) |
DobbieGill
JiangJing ZhangXuyun ZhangWei Emma ManolopoulosYannis WuJia MansoorWathiq MaCongbo |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Data mining
Artificial intelligence Application software Computer systems Education - Data processing Computer vision Data Mining and Knowledge Discovery Artificial Intelligence Computer and Information Systems Applications Computer System Implementation Computers and Education Computer Vision |
ISBN |
9789819608218
981960821X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organisation -- Contents - Part III -- Graph Mining -- Verifiable Graph-Based Approximate Nearest Neighbor Search -- 1 Introduction -- 2 Related Works -- 2.1 Graph-Based Approximate Nearest Neighbor Search -- 2.2 Verifiable Nearest Neighbor Search -- 3 Preliminaries -- 3.1 Hierarchical Clustering-Based Nearest Neighbor Graph -- 3.2 Guided Tree -- 3.3 Merkle Hash Tree (MHT) -- 3.4 The Threat Model -- 4 Our Scheme -- 4.1 Initialization Phase -- 4.2 Query Processing Phase -- 4.3 Verification Phase -- 5 Security Discussion -- 6 Experiments -- 6.1 Setup -- 6.2 Impact of k and Number of Queries on VO Size -- 6.3 Computational Overhead -- 7 Conclusion -- References -- Depth-Enhanced Contrast Attribute Graph Clustering -- 1 Introduction -- 2 Related Work -- 2.1 Deep Graph Clustering -- 2.2 Graph Data Augmentation -- 3 Method -- 3.1 Notations -- 3.2 Deep Enhancement Module -- 3.3 Contrast Learning Module -- 3.4 Self-optimizing Module -- 3.5 Overall Objective -- 4 Experiments -- 4.1 Baseline Dataset -- 4.2 Baseline -- 4.3 Experimental Setup -- 4.4 Evaluation Metrics -- 4.5 Performance Comparison -- 4.6 Ablation Experiment -- 4.7 Sensitivity Analysis -- 4.8 Visualization -- 4.9 Conclusion -- References -- FCMH: Fast Cluster Multi-hop Model for Graph Fraud Detection -- 1 Introduction -- 2 Related Work -- 2.1 Graph Neural Network -- 2.2 Graph Fraud Detection -- 3 Methodology -- 3.1 Problem Formulation -- 3.2 Random Cluster Subgraph Division -- 3.3 Multi-hop Neighbor Difference Aggregation -- 3.4 Downsampling and Optimization Objective -- 4 Experiments -- 4.1 Experiment Settings -- 4.2 Classification Performance -- 4.3 Time Efficiency -- 4.4 Ablation Study -- 5 Conclusion -- References -- Emotion Graph Augmentation for Detecting Fake News in Online Social Networks -- 1 Introduction -- 2 Related Work -- 2.1 Text Based Methods.
2.2 Graph Based Methods -- 2.3 Emotion Based Methods -- 3 Problem Statement -- 4 Methodology -- 4.1 Semantic Graph Construction -- 4.2 Emotion Graph Construction -- 4.3 Graph Augmentation with Adversarial Perturbations -- 4.4 Propagation of Semantics and Emotions -- 4.5 Fake News Detection -- 5 Experiments -- 5.1 Experimental Settings -- 5.2 Overall Performance -- 5.3 Ablation Study -- 5.4 Parameter Analysis -- 5.5 Case Study -- 6 Conclusion -- References -- BiF-AC: A Bidirectional Feedback Actor-Critic Framework for UAV-UGV Graph-Based Search and Rescue Operations -- 1 Introduction -- 2 UAV-UGV Coordination System Model -- 2.1 System Model -- 2.2 Problem Formulation -- 3 The Proposed Method -- 3.1 The Principles of Actor-Critic -- 3.2 The Bidirectional Feedback Actor-Critic Algorithm -- 4 Empirical Studies -- 4.1 Experimental Settings -- 4.2 Performance Evaluation -- 5 Conclusion -- References -- RWEM: An In-Memory Random Walk Based Node Embedding Framework on Multiplex User-Item Graphs -- 1 Introduction -- 2 Background and Related Work -- 2.1 Graph Theory -- 2.2 Stochastic Markov Process -- 2.3 Node Embedding -- 3 RWEM Framework -- 3.1 Embedding Input -- 3.2 Autocovariance-Based Similarity -- 4 Evaluation -- 4.1 Environment -- 4.2 Setup -- 4.3 Results -- 5 Conclusion -- References -- Feature-Aware Unsupervised Detection of Important Nodes in Graphs -- 1 Introduction -- 2 Related Works -- 3 Preliminaries -- 3.1 Problem Statement -- 3.2 Graph Convolutional Networks -- 4 Proposed Model -- 4.1 Feature-Aware Personalized PageRank -- 4.2 Model Architecture -- 4.3 Training Time Cost Analysis -- 5 Experiments -- 5.1 Node Classification -- 5.2 Active Learning -- 6 Conclusion and Future Work -- References -- HHP: A Hybrid Partitioner for Large-Scale Hypergraph -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 4 Hybrid Hypergraph Partitioner. 4.1 Basic Algorithm -- 4.2 Improved Online Partition Algorithm -- 4.3 Hybrid Hypergraph Partitioner -- 5 Evaluation -- 5.1 Experimental Setup -- 5.2 Hypergraph Partitioning -- 5.3 Experimental on MinMax++ -- 5.4 Study on Hybrid Strategies -- 6 Conclusions -- References -- Graph Fusion Based Autoencoder for Node Clustering -- 1 Introduction -- 2 Related Work -- 2.1 Deep Clustering -- 2.2 Autoencoder -- 3 Method -- 3.1 Graph Fusion -- 3.2 Representation Learning -- 3.3 Node Clustering -- 4 Experiments -- 4.1 Experimental Setting -- 4.2 Result Analysis -- 4.3 Ablation Study -- 4.4 Parameter Sensitivity Analysis -- 5 Conclusion -- References -- Regional Food Culture Preference Mining Based on Restaurant POI -- 1 Introduction -- 2 Related Work -- 3 Dataset Construction -- 4 Methods -- 4.1 Statistical Analysis -- 4.2 Community Detection -- 5 Study of Chinese Cuisines -- 5.1 Data Distribution -- 5.2 Geographical Factors -- 5.3 Economical Factors -- 5.4 Population Factors -- 6 Clustering Analysis -- 6.1 Experimental Setup -- 6.2 Overall Performance -- 6.3 Ablation Study -- 6.4 Hyperparameter Analysis -- 6.5 Visualization Analysis -- 7 Conclusions -- References -- Multi-task Learning of Heterogeneous Hypergraph Representations in LBSNs -- 1 Introduction -- 2 Model and Problem Formulation -- 3 Constructing the Heterogeneous Hypergraph -- 4 Heterogeneous Hypergraph Learning -- 4.1 Hypergraph Input -- 4.2 Adaptive Heterogeneous Hypergraph Convolutional Network -- 5 Multi-task Learning -- 6 Empirical Evaluation -- 6.1 End-to-End Comparison -- 6.2 Ablation Testing -- 6.3 Hyperparameter Sensitivity -- 7 Conclusion -- References -- Graph Contrastive Learning for Dissolved Gas Analysis -- 1 Introduction -- 2 Preliminaries -- 2.1 Notation -- 2.2 Constructing KNN Graph -- 3 Methodology -- 3.1 Dual-Channel Graph Representation Learning. 3.2 Ranking Contrastive Learning -- 3.3 Fault Detection -- 4 Experiment -- 4.1 Experimental Setup(RQ1) -- 4.2 Performance Comparison -- 4.3 Ablation Study(RQ2) -- 4.4 Parameter Analysis(RQ3) -- 5 Conclusion -- References -- GCS: A Graph-Augmented Semi-supervised Contrastive Learning Approach for Imbalanced Dissolved Gas Analysis in Power Transformers -- 1 Introduction -- 2 Preliminaries -- 2.1 Notations -- 2.2 Imbalance Settings and Problem Definition -- 3 Methodology -- 3.1 Graph Construction -- 3.2 Semi-supervised Contrastive Learning -- 3.3 Graph Augmentation -- 3.4 Classification and Model Optimization -- 4 Experiments -- 4.1 Experiment Settings -- 4.2 Main Comparison Results (RQ1) -- 4.3 Ablation Study (RQ2) -- 4.4 Imbalance Comparison(RQ3) -- 5 Conclusion -- References -- Contrastive Learning Based on Bipartite Graphs for Interpretable Knowledge Tracing -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Problem Definition -- 3.2 Model Overview -- 3.3 Embedding and Knowledge Structure -- 3.4 Bipartite Graph Attention Network -- 3.5 Bipartite Graph Contrastive Learning -- 3.6 Prediction -- 3.7 Model Optimization -- 4 Experimental Results -- 4.1 Datasets -- 4.2 Baselines and Experimental Settings -- 4.3 Implementation Details -- 4.4 Performance Analysis -- 4.5 Interpretability Discussion -- 4.6 Ablation Study -- 4.7 Conclusion -- References -- Graph Data Understanding and Interpretation Enabled by Large Language Models -- 1 Introduction -- 2 Method -- 2.1 Preliminary -- 2.2 Heterogeneous Data Representation Learning -- 2.3 Converter Alignment Tuning -- 2.4 Retrieval Augmented Thoughts -- 3 Experiments -- 3.1 Training Details -- 3.2 Baseline Method -- 3.3 Performance Comparison -- 3.4 Ablation Experiments -- 4 Conclusion -- References -- SDM-GAT: StylisticFP Detection Method Based on Graph Attention Network -- 1 Introduction. 2 Background and Related Work -- 2.1 Tracking Development -- 2.2 Detection Methods -- 3 Methodology -- 3.1 Preliminaries -- 3.2 Graph Building -- 3.3 Graph Attention Network -- 4 Experiment -- 4.1 Datasets -- 4.2 Baselines and Metric -- 4.3 Implementation Details -- 4.4 Baseline Model Comparison -- 4.5 Impact of Graph Pruning -- 5 Conclusion -- References -- Anomaly Aligned Subgraphs Detection on Multi-layer Attributed Networks -- 1 Introduction -- 2 Related Work -- 2.1 Anomaly Detection -- 2.2 Network Alignment -- 3 Methodology -- 3.1 Anomaly Detection -- 3.2 Network Alignment -- 3.3 Update Anomaly Subgraph Node Set -- 4 Experiment -- 4.1 Experiment Settings -- 4.2 Results -- 4.3 Case Study -- 5 Conclusion -- References -- Path-Aware Siamese Graph Neural Network for Link Prediction -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Problem Formulation -- 3.2 Model Buildup -- 3.3 Contrastive Learning -- 4 Experiments -- 4.1 Datasets and Task -- 4.2 Baselines -- 4.3 Metrics and Settings -- 4.4 Abalation Study -- 5 Conclusion -- References -- GEM-GNN: Group Enhanced Multi-relation Graph Neural Networks for Fraud Detection -- 1 Introduction -- 2 Related Work -- 3 Proposed Model -- 3.1 Problem Definition -- 3.2 Model Architecture -- 3.3 Neighbor Aggregation Module -- 3.4 Group-Based Aggregation Module -- 3.5 Optimization -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 Performance Comparison -- 4.3 Sensitivity Analysis -- 4.4 Training Process Study -- 5 Application -- 6 Conclusion -- References -- Spatial Data Mining -- ESNet: Perceptive Spatial-Spectral Fusion with Multi-stage Reconstruction for Pansharpening -- 1 Introduction -- 2 The Proposed Model -- 2.1 ESNet -- 2.2 Enhanced Spatial Spectral Attention Module -- 2.3 Multi-scale Reconstruction Module -- 2.4 Loss Function -- 3 Experiment -- 3.1 Datasets and Settings -- 3.2 Accuracy Evaluation. 3.3 Results. |
Record Nr. | UNISA-996635667803316 |
Sheng Quan Z | ||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advanced Data Mining and Applications : 20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3–5, 2024, Proceedings, Part I / / edited by Quan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma |
Autore | Sheng Quan Z |
Edizione | [1st ed. 2025.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
Descrizione fisica | 1 online resource (450 pages) |
Disciplina | 006.312 |
Altri autori (Persone) |
DobbieGill
JiangJing ZhangXuyun ZhangWei Emma ManolopoulosYannis WuJia MansoorWathiq MaCongbo |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Data mining
Artificial intelligence Application software Computer systems Education - Data processing Computer vision Data Mining and Knowledge Discovery Artificial Intelligence Computer and Information Systems Applications Computer System Implementation Computers and Education Computer Vision |
ISBN |
9789819608119
9819608112 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996635665403316 |
Sheng Quan Z | ||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Proceedings of the 2008 International Workshop on Context Enabled Source and Service Selection, Integration and Adaptation : April 22 - 22, 2008, Beijing, China |
Autore | Sheng Quan Z |
Pubbl/distr/stampa | [Place of publication not identified], : ACM, 2008 |
Descrizione fisica | 1 online resource (63 pages) |
Collana | ACM International Conference Proceedings Series |
Soggetto topico |
Electrical & Computer Engineering
Engineering & Applied Sciences Telecommunications |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti |
International Workshop on Context Enabled Source and Service Selection, Integration and Adaptation, Beijing, China - April 22 - 22, 2008
CSSSIA '08 Proceedings of the 2008 International Workshop on Context Enabled Source and Service Selection, Integration and Adaptation |
Record Nr. | UNINA-9910376410303321 |
Sheng Quan Z | ||
[Place of publication not identified], : ACM, 2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|