top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Data Mining and Applications : 20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3–5, 2024, Proceedings, Part VI / / edited by Quan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma
Advanced Data Mining and Applications : 20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3–5, 2024, Proceedings, Part VI / / edited by Quan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma
Autore Sheng Quan Z
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (398 pages)
Disciplina 006.312
Altri autori (Persone) DobbieGill
JiangJing
ZhangXuyun
ZhangWei Emma
ManolopoulosYannis
WuJia
MansoorWathiq
MaCongbo
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Data mining
Artificial intelligence
Application software
Computer systems
Education - Data processing
Computer vision
Data Mining and Knowledge Discovery
Artificial Intelligence
Computer and Information Systems Applications
Computer System Implementation
Computers and Education
Computer Vision
ISBN 9789819608508
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996636772303316
Sheng Quan Z  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced Data Mining and Applications : 20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3–5, 2024, Proceedings, Part V / / edited by Quan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma
Advanced Data Mining and Applications : 20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3–5, 2024, Proceedings, Part V / / edited by Quan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma
Autore Sheng Quan Z
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (394 pages)
Disciplina 006.312
Altri autori (Persone) DobbieGill
JiangJing
ZhangXuyun
ZhangWei Emma
ManolopoulosYannis
WuJia
MansoorWathiq
MaCongbo
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Data mining
Artificial intelligence
Application software
Computer systems
Education - Data processing
Computer vision
Data Mining and Knowledge Discovery
Artificial Intelligence
Computer and Information Systems Applications
Computer System Implementation
Computers and Education
Computer Vision
ISBN 9789819608478
9819608473
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996635672603316
Sheng Quan Z  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced Data Mining and Applications : 20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3–5, 2024, Proceedings, Part II / / edited by Quan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma
Advanced Data Mining and Applications : 20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3–5, 2024, Proceedings, Part II / / edited by Quan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma
Autore Sheng Quan Z
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (447 pages)
Disciplina 006.312
Altri autori (Persone) DobbieGill
JiangJing
ZhangXuyun
ZhangWei Emma
ManolopoulosYannis
WuJia
MansoorWathiq
MaCongbo
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Data mining
Artificial intelligence
Application software
Computer systems
Education - Data processing
Computer vision
Data Mining and Knowledge Discovery
Artificial Intelligence
Computer and Information Systems Applications
Computer System Implementation
Computers and Education
Computer Vision
ISBN 9789819608140
9819608147
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996635669303316
Sheng Quan Z  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced Data Mining and Applications : 20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3–5, 2024, Proceedings, Part IV / / edited by Quan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma
Advanced Data Mining and Applications : 20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3–5, 2024, Proceedings, Part IV / / edited by Quan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma
Autore Sheng Quan Z
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (437 pages)
Disciplina 006.312
Altri autori (Persone) DobbieGill
JiangJing
ZhangXuyun
ZhangWei Emma
ManolopoulosYannis
WuJia
MansoorWathiq
MaCongbo
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Data mining
Artificial intelligence
Application software
Computer systems
Education - Data processing
Computer vision
Data Mining and Knowledge Discovery
Artificial Intelligence
Computer and Information Systems Applications
Computer System Implementation
Computers and Education
Computer Vision
ISBN 9789819608409
9819608406
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996635667603316
Sheng Quan Z  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced Data Mining and Applications : 20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3–5, 2024, Proceedings, Part III / / edited by Quan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma
Advanced Data Mining and Applications : 20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3–5, 2024, Proceedings, Part III / / edited by Quan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma
Autore Sheng Quan Z
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (465 pages)
Disciplina 006.312
Altri autori (Persone) DobbieGill
JiangJing
ZhangXuyun
ZhangWei Emma
ManolopoulosYannis
WuJia
MansoorWathiq
MaCongbo
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Data mining
Artificial intelligence
Application software
Computer systems
Education - Data processing
Computer vision
Data Mining and Knowledge Discovery
Artificial Intelligence
Computer and Information Systems Applications
Computer System Implementation
Computers and Education
Computer Vision
ISBN 9789819608218
981960821X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organisation -- Contents - Part III -- Graph Mining -- Verifiable Graph-Based Approximate Nearest Neighbor Search -- 1 Introduction -- 2 Related Works -- 2.1 Graph-Based Approximate Nearest Neighbor Search -- 2.2 Verifiable Nearest Neighbor Search -- 3 Preliminaries -- 3.1 Hierarchical Clustering-Based Nearest Neighbor Graph -- 3.2 Guided Tree -- 3.3 Merkle Hash Tree (MHT) -- 3.4 The Threat Model -- 4 Our Scheme -- 4.1 Initialization Phase -- 4.2 Query Processing Phase -- 4.3 Verification Phase -- 5 Security Discussion -- 6 Experiments -- 6.1 Setup -- 6.2 Impact of k and Number of Queries on VO Size -- 6.3 Computational Overhead -- 7 Conclusion -- References -- Depth-Enhanced Contrast Attribute Graph Clustering -- 1 Introduction -- 2 Related Work -- 2.1 Deep Graph Clustering -- 2.2 Graph Data Augmentation -- 3 Method -- 3.1 Notations -- 3.2 Deep Enhancement Module -- 3.3 Contrast Learning Module -- 3.4 Self-optimizing Module -- 3.5 Overall Objective -- 4 Experiments -- 4.1 Baseline Dataset -- 4.2 Baseline -- 4.3 Experimental Setup -- 4.4 Evaluation Metrics -- 4.5 Performance Comparison -- 4.6 Ablation Experiment -- 4.7 Sensitivity Analysis -- 4.8 Visualization -- 4.9 Conclusion -- References -- FCMH: Fast Cluster Multi-hop Model for Graph Fraud Detection -- 1 Introduction -- 2 Related Work -- 2.1 Graph Neural Network -- 2.2 Graph Fraud Detection -- 3 Methodology -- 3.1 Problem Formulation -- 3.2 Random Cluster Subgraph Division -- 3.3 Multi-hop Neighbor Difference Aggregation -- 3.4 Downsampling and Optimization Objective -- 4 Experiments -- 4.1 Experiment Settings -- 4.2 Classification Performance -- 4.3 Time Efficiency -- 4.4 Ablation Study -- 5 Conclusion -- References -- Emotion Graph Augmentation for Detecting Fake News in Online Social Networks -- 1 Introduction -- 2 Related Work -- 2.1 Text Based Methods.
2.2 Graph Based Methods -- 2.3 Emotion Based Methods -- 3 Problem Statement -- 4 Methodology -- 4.1 Semantic Graph Construction -- 4.2 Emotion Graph Construction -- 4.3 Graph Augmentation with Adversarial Perturbations -- 4.4 Propagation of Semantics and Emotions -- 4.5 Fake News Detection -- 5 Experiments -- 5.1 Experimental Settings -- 5.2 Overall Performance -- 5.3 Ablation Study -- 5.4 Parameter Analysis -- 5.5 Case Study -- 6 Conclusion -- References -- BiF-AC: A Bidirectional Feedback Actor-Critic Framework for UAV-UGV Graph-Based Search and Rescue Operations -- 1 Introduction -- 2 UAV-UGV Coordination System Model -- 2.1 System Model -- 2.2 Problem Formulation -- 3 The Proposed Method -- 3.1 The Principles of Actor-Critic -- 3.2 The Bidirectional Feedback Actor-Critic Algorithm -- 4 Empirical Studies -- 4.1 Experimental Settings -- 4.2 Performance Evaluation -- 5 Conclusion -- References -- RWEM: An In-Memory Random Walk Based Node Embedding Framework on Multiplex User-Item Graphs -- 1 Introduction -- 2 Background and Related Work -- 2.1 Graph Theory -- 2.2 Stochastic Markov Process -- 2.3 Node Embedding -- 3 RWEM Framework -- 3.1 Embedding Input -- 3.2 Autocovariance-Based Similarity -- 4 Evaluation -- 4.1 Environment -- 4.2 Setup -- 4.3 Results -- 5 Conclusion -- References -- Feature-Aware Unsupervised Detection of Important Nodes in Graphs -- 1 Introduction -- 2 Related Works -- 3 Preliminaries -- 3.1 Problem Statement -- 3.2 Graph Convolutional Networks -- 4 Proposed Model -- 4.1 Feature-Aware Personalized PageRank -- 4.2 Model Architecture -- 4.3 Training Time Cost Analysis -- 5 Experiments -- 5.1 Node Classification -- 5.2 Active Learning -- 6 Conclusion and Future Work -- References -- HHP: A Hybrid Partitioner for Large-Scale Hypergraph -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 4 Hybrid Hypergraph Partitioner.
4.1 Basic Algorithm -- 4.2 Improved Online Partition Algorithm -- 4.3 Hybrid Hypergraph Partitioner -- 5 Evaluation -- 5.1 Experimental Setup -- 5.2 Hypergraph Partitioning -- 5.3 Experimental on MinMax++ -- 5.4 Study on Hybrid Strategies -- 6 Conclusions -- References -- Graph Fusion Based Autoencoder for Node Clustering -- 1 Introduction -- 2 Related Work -- 2.1 Deep Clustering -- 2.2 Autoencoder -- 3 Method -- 3.1 Graph Fusion -- 3.2 Representation Learning -- 3.3 Node Clustering -- 4 Experiments -- 4.1 Experimental Setting -- 4.2 Result Analysis -- 4.3 Ablation Study -- 4.4 Parameter Sensitivity Analysis -- 5 Conclusion -- References -- Regional Food Culture Preference Mining Based on Restaurant POI -- 1 Introduction -- 2 Related Work -- 3 Dataset Construction -- 4 Methods -- 4.1 Statistical Analysis -- 4.2 Community Detection -- 5 Study of Chinese Cuisines -- 5.1 Data Distribution -- 5.2 Geographical Factors -- 5.3 Economical Factors -- 5.4 Population Factors -- 6 Clustering Analysis -- 6.1 Experimental Setup -- 6.2 Overall Performance -- 6.3 Ablation Study -- 6.4 Hyperparameter Analysis -- 6.5 Visualization Analysis -- 7 Conclusions -- References -- Multi-task Learning of Heterogeneous Hypergraph Representations in LBSNs -- 1 Introduction -- 2 Model and Problem Formulation -- 3 Constructing the Heterogeneous Hypergraph -- 4 Heterogeneous Hypergraph Learning -- 4.1 Hypergraph Input -- 4.2 Adaptive Heterogeneous Hypergraph Convolutional Network -- 5 Multi-task Learning -- 6 Empirical Evaluation -- 6.1 End-to-End Comparison -- 6.2 Ablation Testing -- 6.3 Hyperparameter Sensitivity -- 7 Conclusion -- References -- Graph Contrastive Learning for Dissolved Gas Analysis -- 1 Introduction -- 2 Preliminaries -- 2.1 Notation -- 2.2 Constructing KNN Graph -- 3 Methodology -- 3.1 Dual-Channel Graph Representation Learning.
3.2 Ranking Contrastive Learning -- 3.3 Fault Detection -- 4 Experiment -- 4.1 Experimental Setup(RQ1) -- 4.2 Performance Comparison -- 4.3 Ablation Study(RQ2) -- 4.4 Parameter Analysis(RQ3) -- 5 Conclusion -- References -- GCS: A Graph-Augmented Semi-supervised Contrastive Learning Approach for Imbalanced Dissolved Gas Analysis in Power Transformers -- 1 Introduction -- 2 Preliminaries -- 2.1 Notations -- 2.2 Imbalance Settings and Problem Definition -- 3 Methodology -- 3.1 Graph Construction -- 3.2 Semi-supervised Contrastive Learning -- 3.3 Graph Augmentation -- 3.4 Classification and Model Optimization -- 4 Experiments -- 4.1 Experiment Settings -- 4.2 Main Comparison Results (RQ1) -- 4.3 Ablation Study (RQ2) -- 4.4 Imbalance Comparison(RQ3) -- 5 Conclusion -- References -- Contrastive Learning Based on Bipartite Graphs for Interpretable Knowledge Tracing -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Problem Definition -- 3.2 Model Overview -- 3.3 Embedding and Knowledge Structure -- 3.4 Bipartite Graph Attention Network -- 3.5 Bipartite Graph Contrastive Learning -- 3.6 Prediction -- 3.7 Model Optimization -- 4 Experimental Results -- 4.1 Datasets -- 4.2 Baselines and Experimental Settings -- 4.3 Implementation Details -- 4.4 Performance Analysis -- 4.5 Interpretability Discussion -- 4.6 Ablation Study -- 4.7 Conclusion -- References -- Graph Data Understanding and Interpretation Enabled by Large Language Models -- 1 Introduction -- 2 Method -- 2.1 Preliminary -- 2.2 Heterogeneous Data Representation Learning -- 2.3 Converter Alignment Tuning -- 2.4 Retrieval Augmented Thoughts -- 3 Experiments -- 3.1 Training Details -- 3.2 Baseline Method -- 3.3 Performance Comparison -- 3.4 Ablation Experiments -- 4 Conclusion -- References -- SDM-GAT: StylisticFP Detection Method Based on Graph Attention Network -- 1 Introduction.
2 Background and Related Work -- 2.1 Tracking Development -- 2.2 Detection Methods -- 3 Methodology -- 3.1 Preliminaries -- 3.2 Graph Building -- 3.3 Graph Attention Network -- 4 Experiment -- 4.1 Datasets -- 4.2 Baselines and Metric -- 4.3 Implementation Details -- 4.4 Baseline Model Comparison -- 4.5 Impact of Graph Pruning -- 5 Conclusion -- References -- Anomaly Aligned Subgraphs Detection on Multi-layer Attributed Networks -- 1 Introduction -- 2 Related Work -- 2.1 Anomaly Detection -- 2.2 Network Alignment -- 3 Methodology -- 3.1 Anomaly Detection -- 3.2 Network Alignment -- 3.3 Update Anomaly Subgraph Node Set -- 4 Experiment -- 4.1 Experiment Settings -- 4.2 Results -- 4.3 Case Study -- 5 Conclusion -- References -- Path-Aware Siamese Graph Neural Network for Link Prediction -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Problem Formulation -- 3.2 Model Buildup -- 3.3 Contrastive Learning -- 4 Experiments -- 4.1 Datasets and Task -- 4.2 Baselines -- 4.3 Metrics and Settings -- 4.4 Abalation Study -- 5 Conclusion -- References -- GEM-GNN: Group Enhanced Multi-relation Graph Neural Networks for Fraud Detection -- 1 Introduction -- 2 Related Work -- 3 Proposed Model -- 3.1 Problem Definition -- 3.2 Model Architecture -- 3.3 Neighbor Aggregation Module -- 3.4 Group-Based Aggregation Module -- 3.5 Optimization -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 Performance Comparison -- 4.3 Sensitivity Analysis -- 4.4 Training Process Study -- 5 Application -- 6 Conclusion -- References -- Spatial Data Mining -- ESNet: Perceptive Spatial-Spectral Fusion with Multi-stage Reconstruction for Pansharpening -- 1 Introduction -- 2 The Proposed Model -- 2.1 ESNet -- 2.2 Enhanced Spatial Spectral Attention Module -- 2.3 Multi-scale Reconstruction Module -- 2.4 Loss Function -- 3 Experiment -- 3.1 Datasets and Settings -- 3.2 Accuracy Evaluation.
3.3 Results.
Record Nr. UNISA-996635667803316
Sheng Quan Z  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced Data Mining and Applications : 20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3–5, 2024, Proceedings, Part I / / edited by Quan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma
Advanced Data Mining and Applications : 20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3–5, 2024, Proceedings, Part I / / edited by Quan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma
Autore Sheng Quan Z
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (450 pages)
Disciplina 006.312
Altri autori (Persone) DobbieGill
JiangJing
ZhangXuyun
ZhangWei Emma
ManolopoulosYannis
WuJia
MansoorWathiq
MaCongbo
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Data mining
Artificial intelligence
Application software
Computer systems
Education - Data processing
Computer vision
Data Mining and Knowledge Discovery
Artificial Intelligence
Computer and Information Systems Applications
Computer System Implementation
Computers and Education
Computer Vision
ISBN 9789819608119
9819608112
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996635665403316
Sheng Quan Z  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Proceedings of the 2008 International Workshop on Context Enabled Source and Service Selection, Integration and Adaptation : April 22 - 22, 2008, Beijing, China
Proceedings of the 2008 International Workshop on Context Enabled Source and Service Selection, Integration and Adaptation : April 22 - 22, 2008, Beijing, China
Autore Sheng Quan Z
Pubbl/distr/stampa [Place of publication not identified], : ACM, 2008
Descrizione fisica 1 online resource (63 pages)
Collana ACM International Conference Proceedings Series
Soggetto topico Electrical & Computer Engineering
Engineering & Applied Sciences
Telecommunications
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti International Workshop on Context Enabled Source and Service Selection, Integration and Adaptation, Beijing, China - April 22 - 22, 2008
CSSSIA '08
Proceedings of the 2008 International Workshop on Context Enabled Source and Service Selection, Integration and Adaptation
Record Nr. UNINA-9910376410303321
Sheng Quan Z  
[Place of publication not identified], : ACM, 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui