top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Mitosis Domain Generalization and Diabetic Retinopathy Analysis [[electronic resource] ] : MICCAI Challenges MIDOG 2022 and DRAC 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18–22, 2022, Proceedings / / edited by Bin Sheng, Marc Aubreville
Mitosis Domain Generalization and Diabetic Retinopathy Analysis [[electronic resource] ] : MICCAI Challenges MIDOG 2022 and DRAC 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18–22, 2022, Proceedings / / edited by Bin Sheng, Marc Aubreville
Autore Sheng Bin
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (250 pages)
Disciplina 006
Altri autori (Persone) AubrevilleMarc
Collana Lecture Notes in Computer Science
Soggetto topico Image processing—Digital techniques
Computer vision
Computers
Application software
Machine learning
Computer Imaging, Vision, Pattern Recognition and Graphics
Computing Milieux
Computer and Information Systems Applications
Machine Learning
Soggetto non controllato Ophthalmology
Medical
ISBN 3-031-33658-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface DRAC 2022 -- nnU-Net Pre- and Postprocessing Strategies for UW-OCTA Segmentation Tasks in Diabetic Retinopathy Analysis -- Automated analysis of diabetic retinopathy using vessel segmentation maps as inductive bias -- Bag of Tricks for Diabetic Retinopathy Grading of Ultra-wide Optical Coherence Tomography Angiography Images -- Deep convolutional neural network for image quality assessment and diabetic retinopathy grading -- Diabetic Retinal Overlap Lesion Segmentation Network -- An Ensemble Method to Automatically Grade Diabetic Retinopathy with Optical Coherence Tomography Angiography Images -- Bag of Tricks for Developing Diabetic Retinopathy Analysis Framework to Overcome Data Scarcity -- Deep-OCTA: Ensemble Deep Learning Approaches for Diabetic Retinopathy Analysis on OCTA Images -- Deep Learning-based Multi-tasking System for Diabetic Retinopathy in UW-OCTA images -- Semi-Supervised Semantic Segmentation Methods for UW-OCTA Diabetic Retinopathy Grade Assessment -- Image Quality Assessment based on Multi-Model Ensemble Class-Imbalance Repair Algorithm for Diabetic Retinopathy UW-OCTA Images -- An improved U-Net for diabetic retinopathy segmentation -- A Vision transformer based deep learning architecture for automatic diagnosis of diabetic retinopathy in optical coherence tomography angiography -- Segmentation, Classification, and Quality Assessment of UW-OCTA Images for the Diagnosis of Diabetic Retinopathy -- Data Augmentation by Fourier Transformation for Class-Imbalance : Application to Medical Image Quality Assessment -- Automatic image quality assessment and DR grading method based on convolutional neural network -- A transfer learning based model ensemble method for image quality assessment and diabetic retinopathy grading -- Automatic Diabetic Retinopathy Lesion Segmentation in UW-OCTA Images using Transfer Learning -- Preface MIDOG 2022 -- Reference Algorithms for the Mitosis Domain Generalization (MIDOG) 2022 Challenge -- Radial Prediction Domain Adaption Classifier for the MIDOG 2022 challenge -- Detecting Mitoses with a Convolutional Neural Network for MIDOG 2022 Challenge -- Tackling Mitosis Domain Generalization in Histopathology Images with Color Normalization -- "A Deep Learning based Ensemble Model for Generalized Mitosis Detection in H&E stained Whole Slide Images" -- Fine-Grained Hard-Negative Mining: Generalizing Mitosis Detection with a Fifth of the MIDOG 2022 Dataset -- Multi-task RetinaNet for mitosis detection. .
Record Nr. UNISA-996534463903316
Sheng Bin  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Mitosis Domain Generalization and Diabetic Retinopathy Analysis : MICCAI Challenges MIDOG 2022 and DRAC 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18–22, 2022, Proceedings / / edited by Bin Sheng, Marc Aubreville
Mitosis Domain Generalization and Diabetic Retinopathy Analysis : MICCAI Challenges MIDOG 2022 and DRAC 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18–22, 2022, Proceedings / / edited by Bin Sheng, Marc Aubreville
Autore Sheng Bin
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (250 pages)
Disciplina 006
617.735
Altri autori (Persone) AubrevilleMarc
Collana Lecture Notes in Computer Science
Soggetto topico Image processing—Digital techniques
Computer vision
Computers
Application software
Machine learning
Computer Imaging, Vision, Pattern Recognition and Graphics
Computing Milieux
Computer and Information Systems Applications
Machine Learning
Soggetto non controllato Ophthalmology
Medical
ISBN 3-031-33658-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface DRAC 2022 -- nnU-Net Pre- and Postprocessing Strategies for UW-OCTA Segmentation Tasks in Diabetic Retinopathy Analysis -- Automated analysis of diabetic retinopathy using vessel segmentation maps as inductive bias -- Bag of Tricks for Diabetic Retinopathy Grading of Ultra-wide Optical Coherence Tomography Angiography Images -- Deep convolutional neural network for image quality assessment and diabetic retinopathy grading -- Diabetic Retinal Overlap Lesion Segmentation Network -- An Ensemble Method to Automatically Grade Diabetic Retinopathy with Optical Coherence Tomography Angiography Images -- Bag of Tricks for Developing Diabetic Retinopathy Analysis Framework to Overcome Data Scarcity -- Deep-OCTA: Ensemble Deep Learning Approaches for Diabetic Retinopathy Analysis on OCTA Images -- Deep Learning-based Multi-tasking System for Diabetic Retinopathy in UW-OCTA images -- Semi-Supervised Semantic Segmentation Methods for UW-OCTA Diabetic Retinopathy Grade Assessment -- Image Quality Assessment based on Multi-Model Ensemble Class-Imbalance Repair Algorithm for Diabetic Retinopathy UW-OCTA Images -- An improved U-Net for diabetic retinopathy segmentation -- A Vision transformer based deep learning architecture for automatic diagnosis of diabetic retinopathy in optical coherence tomography angiography -- Segmentation, Classification, and Quality Assessment of UW-OCTA Images for the Diagnosis of Diabetic Retinopathy -- Data Augmentation by Fourier Transformation for Class-Imbalance : Application to Medical Image Quality Assessment -- Automatic image quality assessment and DR grading method based on convolutional neural network -- A transfer learning based model ensemble method for image quality assessment and diabetic retinopathy grading -- Automatic Diabetic Retinopathy Lesion Segmentation in UW-OCTA Images using Transfer Learning -- Preface MIDOG 2022 -- Reference Algorithms for the Mitosis Domain Generalization (MIDOG) 2022 Challenge -- Radial Prediction Domain Adaption Classifier for the MIDOG 2022 challenge -- Detecting Mitoses with a Convolutional Neural Network for MIDOG 2022 Challenge -- Tackling Mitosis Domain Generalization in Histopathology Images with Color Normalization -- "A Deep Learning based Ensemble Model for Generalized Mitosis Detection in H&E stained Whole Slide Images" -- Fine-Grained Hard-Negative Mining: Generalizing Mitosis Detection with a Fifth of the MIDOG 2022 Dataset -- Multi-task RetinaNet for mitosis detection. .
Record Nr. UNINA-9910728397403321
Sheng Bin  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Myopic Maculopathy Analysis : MICCAI Challenge MMAC 2023, Held in Conjunction with MICCAI 2023, Virtual Event, October 8-12, 2023, Proceedings
Myopic Maculopathy Analysis : MICCAI Challenge MMAC 2023, Held in Conjunction with MICCAI 2023, Virtual Event, October 8-12, 2023, Proceedings
Autore Sheng Bin
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer, , 2024
Descrizione fisica 1 online resource (131 pages)
Altri autori (Persone) ChenHao
WongTien Yin
Collana Lecture Notes in Computer Science Series
ISBN 3-031-54857-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- Automated Detection of Myopic Maculopathy in MMAC 2023: Achievements in Classification, Segmentation, and Spherical Equivalent Prediction -- 1 Introduction -- 2 Materials and Methods -- 2.1 Datasets -- 2.2 Task 1: Classification of Myopic Maculopathy -- 2.3 Task 2: Segmentation of Myopic Maculopathy Plus Lesions -- 2.4 Task 3: Prediction of Spherical Equivalent -- 2.5 Implementation Details -- 3 Results -- 3.1 Task 1: Classification of Myopic Maculopathy -- 3.2 Task 2: Segmentation of Myopic Maculopathy Plus Lesions -- 3.3 Task 3: Prediction of Spherical Equivalent -- 4 Discussion and Conclusions -- References -- Swin-MMC: Swin-Based Model for Myopic Maculopathy Classification in Fundus Images -- 1 Introduction -- 2 Method -- 2.1 Enhanced ArcFace Loss with 3 Sub-centers -- 2.2 Weak Label -- 3 Experiments -- 3.1 Dataset and Evaluation Measures -- 3.2 Image Preprocessing and Augmentation -- 3.3 Implementation Details -- 4 Results and Discussion -- 4.1 Results on Testing Set -- 4.2 Visualization Heatmap Analysis -- 4.3 Ablation Study in Further Test Phase -- 4.4 Limitation and Future Work -- 5 Conclusion -- References -- Towards Label-Efficient Deep Learning for Myopic Maculopathy Classification -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Pre-training -- 3.2 Network Architecture -- 3.3 Pseudo Labeling -- 3.4 Image Resolution -- 3.5 Loss Function -- 3.6 Model Ensemble -- 4 Experiment -- 4.1 Dataset -- 4.2 Implementation Details -- 4.3 Evaluation Metrics -- 4.4 Results on the Validation Set -- 4.5 Results on the MMAC Leaderboard -- 5 Conclusion -- References -- Ensemble Deep Learning Approaches for Myopic Maculopathy Plus Lesions Segmentation -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Network Architecture -- 3.2 Loss Function -- 3.3 Model Ensemble -- 4 Experiments.
4.1 Dataset -- 4.2 Implementation Details -- 4.3 Evaluation Metrics -- 4.4 Results on the Validation Set -- 4.5 Results on the Leaderboard -- 4.6 Visual Segmentation Results -- 5 Conclusion -- References -- Beyond MobileNet: An Improved MobileNet for Retinal Diseases -- 1 Introduction -- 2 Related Work -- 2.1 CNN-Based Method for RD Diagnosis -- 2.2 VIT-Based Method for RD Diagnosis -- 3 Methods -- 3.1 Network Design -- 3.2 Training Techniques -- 4 MMAC - Classification of Myopic Maculopathy -- 4.1 Dataset and Evaluation Metrics -- 4.2 Implementation Details -- 4.3 Experimental Results -- 5 Conclusion -- References -- Prediction of Spherical Equivalent with Vanilla ResNet -- 1 Introduction -- 2 Related Works -- 3 Methods -- 4 Results -- 5 Discussion: The Significance of Proper Data Augmentation -- 6 Conclusion -- References -- Semi-supervised Learning for Myopic Maculopathy Analysis -- 1 Introduction -- 2 Related Work -- 3 Datasets -- 4 Segmentation of Myopic Maculopathy Plus Lesions -- 5 Prediction of Spherical Equivalent -- 6 Conclusions -- References -- A Clinically Guided Approach for Training Deep Neural Networks for Myopic Maculopathy Classification -- 1 Introduction -- 2 Methods -- 2.1 Datasets and Pre-processing -- 2.2 Image Synthesis Pipeline Guided by Clinical Domain Knowledge -- 2.3 Mix-Up Augmentation -- 2.4 Evaluation Metrics -- 2.5 Training Details -- 2.6 Ensemble Prediction via Test-Time Augmentation -- 3 Results -- 4 Conclusions and Future Directions -- References -- Classification of Myopic Maculopathy Images with Self-supervised Driven Multiple Instance Learning Network -- 1 Introduction -- 2 Related Work -- 2.1 Deep Learning in Myopic Maculopathy Analysis -- 2.2 Multiple Instance Learning -- 2.3 Self-supervised Learning -- 3 Methodology -- 3.1 Generative Data Augmentation -- 3.2 Backbone Architecture -- 4 Experiments.
4.1 Datasets and Implementation -- 4.2 Results -- 5 Conclusion -- References -- Self-supervised Learning and Data Diversity Based Prediction of Spherical Equivalent -- 1 Introduction -- 2 Our Solution -- 2.1 Baseline -- 2.2 Self-supervised Learning -- 2.3 Increase Data Diversity -- 2.4 Part of Data -- 2.5 Test-Time Augmentation -- 3 Experiment -- 3.1 Implement Details -- 3.2 Experiment Results -- 4 Conclusion -- References -- Myopic Maculopathy Analysis Using Multi-task Learning and Pseudo Labeling -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Multi-task Learning -- 3.2 Pseudo-labeling -- 4 Results -- 5 Conclusion -- References -- Author Index.
Record Nr. UNISA-996587859203316
Sheng Bin  
Cham : , : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui