top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Genetic Programming Theory and Practice XVI / / edited by Wolfgang Banzhaf, Lee Spector, Leigh Sheneman
Genetic Programming Theory and Practice XVI / / edited by Wolfgang Banzhaf, Lee Spector, Leigh Sheneman
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XXI, 234 p. 65 illus., 47 illus. in color.)
Disciplina 006.3
006.31
Collana Genetic and Evolutionary Computation
Soggetto topico Artificial intelligence
Computational intelligence
Algorithms
Artificial Intelligence
Computational Intelligence
Algorithm Analysis and Problem Complexity
ISBN 3-030-04735-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Exploring Genetic Programming Systems with MAP-Elites -- 2 The Evolutionary Buffet Method -- 3 Emergent Policy Discovery for Visual Reinforcement Learning through Tangled Program Graphs: A Tutorial -- 4 Strong Typing, Swarm Enhancement, and Deep Learning Feature Selection in the Pursuit of Symbolic Regression-Classification -- 5 Cluster Analysis of a Symbolic Regression Search Space -- 6 What else is in an evolved name? Exploring evolvable specificity with SignalGP -- Lexicase Selection Beyond Genetic Programming -- 8 Evolving developmental programs that build neural networks for solving multiple problems -- 9 The Elephant in the Room - Towards the Application of Genetic Programming to Automatic Programming -- 10 Untapped Potential of Genetic Programming: Transfer Learning and Outlier Removal -- 11 Program Search for Machine Learning Pipelines Leveraging Symbolic Planning and Reinforcement Learning.
Record Nr. UNINA-9910337578703321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Genetic Programming Theory and Practice XVII [[electronic resource] /] / edited by Wolfgang Banzhaf, Erik Goodman, Leigh Sheneman, Leonardo Trujillo, Bill Worzel
Genetic Programming Theory and Practice XVII [[electronic resource] /] / edited by Wolfgang Banzhaf, Erik Goodman, Leigh Sheneman, Leonardo Trujillo, Bill Worzel
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XXVI, 409 p. 142 illus., 112 illus. in color.)
Disciplina 006.31
Collana Genetic and Evolutionary Computation
Soggetto topico Artificial intelligence
Computational intelligence
Algorithms
Artificial Intelligence
Computational Intelligence
Algorithm Analysis and Problem Complexity
ISBN 3-030-39958-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Characterizing the Effects of Random Subsampling on Lexicase Selection -- 2. It is Time for New Perspectives on How to Fight Bloatin GP -- 3. Explorations of the Semantic Learning Machine Neuroevolution Algorithm -- 4. Can Genetic Programming Perform Explainable Machine Learning for Bioinformatics? -- 5. Symbolic Regression by Exhaustive Search – Reducing the Search Space using Syntactical Constraints and Efficient Semantic Structure Deduplication -- 6. Temporal Memory Sharing in Visual Reinforcement Learning -- 7. The Evolution of Representations in Genetic Programming Trees -- 8. How Competitive is Genetic Programming in Business Data Science Applications? -- 9. Using Modularity Metrics as Design Features to Guide Evolution in Genetic Programming -- 10. Evolutionary Computation and AI Safety -- 11. Genetic Programming Symbolic Regression -- 12. Hands-on Artificial Evolution through Brain Programming -- 13. Comparison of Linear Genome Representations For Software Synthesis -- 14. Enhanced Optimization with Composite Objectives and Novelty Pulsation -- 15. New Pathways in Coevolutionary Computation -- 16. 2019 Evolutionary Algorithms Review -- 17. Evolving a Dota 2 Hero Bot with a Probabilistic Shared Memory Model -- 18. Modelling Genetic Programming as a Simple Sampling Algorithm -- 19. An Evolutionary System for Better Automatic Software Repair -- Index.
Record Nr. UNISA-996465456403316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Genetic Programming Theory and Practice XVII / / edited by Wolfgang Banzhaf, Erik Goodman, Leigh Sheneman, Leonardo Trujillo, Bill Worzel
Genetic Programming Theory and Practice XVII / / edited by Wolfgang Banzhaf, Erik Goodman, Leigh Sheneman, Leonardo Trujillo, Bill Worzel
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XXVI, 409 p. 142 illus., 112 illus. in color.)
Disciplina 006.31
Collana Genetic and Evolutionary Computation
Soggetto topico Artificial intelligence
Computational intelligence
Algorithms
Artificial Intelligence
Computational Intelligence
Algorithm Analysis and Problem Complexity
ISBN 3-030-39958-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Characterizing the Effects of Random Subsampling on Lexicase Selection -- 2. It is Time for New Perspectives on How to Fight Bloatin GP -- 3. Explorations of the Semantic Learning Machine Neuroevolution Algorithm -- 4. Can Genetic Programming Perform Explainable Machine Learning for Bioinformatics? -- 5. Symbolic Regression by Exhaustive Search – Reducing the Search Space using Syntactical Constraints and Efficient Semantic Structure Deduplication -- 6. Temporal Memory Sharing in Visual Reinforcement Learning -- 7. The Evolution of Representations in Genetic Programming Trees -- 8. How Competitive is Genetic Programming in Business Data Science Applications? -- 9. Using Modularity Metrics as Design Features to Guide Evolution in Genetic Programming -- 10. Evolutionary Computation and AI Safety -- 11. Genetic Programming Symbolic Regression -- 12. Hands-on Artificial Evolution through Brain Programming -- 13. Comparison of Linear Genome Representations For Software Synthesis -- 14. Enhanced Optimization with Composite Objectives and Novelty Pulsation -- 15. New Pathways in Coevolutionary Computation -- 16. 2019 Evolutionary Algorithms Review -- 17. Evolving a Dota 2 Hero Bot with a Probabilistic Shared Memory Model -- 18. Modelling Genetic Programming as a Simple Sampling Algorithm -- 19. An Evolutionary System for Better Automatic Software Repair -- Index.
Record Nr. UNINA-9910409670203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui