top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Materials for Solid State Lighting / / edited by Vijay Kumar, Vishal Sharma, Hendrik C. Swart
Advanced Materials for Solid State Lighting / / edited by Vijay Kumar, Vishal Sharma, Hendrik C. Swart
Autore Kumar Vijay
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (405 pages)
Disciplina 621.36
Altri autori (Persone) SharmaVishal (Associate professor)
SwartHendrik C
Collana Progress in Optical Science and Photonics
Soggetto topico Optics
Optical materials
Nanochemistry
Photonics
Optical engineering
Quantum dots
Applied Optics
Optical Materials
Photonics and Optical Engineering
Quantum Dots
ISBN 9789819941452
9819941458
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Rare earth doped inorganic materials for light-emitting applications -- 2. Charge transfer in rare-earth-doped inorganic materials -- 3. ZnO based phosphors materials -- 4. Dynamics of perovskite Titanite luminescent materials -- 5. Rare earth doped Ternary oxides materials for down-conversion and upconversion.
Record Nr. UNINA-9910735796703321
Kumar Vijay  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metal Oxides for Next-Generation Optoelectronic, Photonic, and Photovoltaic Applications
Metal Oxides for Next-Generation Optoelectronic, Photonic, and Photovoltaic Applications
Autore Kumar Vijay
Edizione [1st ed.]
Pubbl/distr/stampa San Diego : , : Elsevier, , 2023
Descrizione fisica 1 online resource (676 pages)
Disciplina 621.381045
Altri autori (Persone) SharmaVishal (Associate professor)
SwartHendrik C
DasSubrata
Collana Metal Oxides Series
Soggetto topico Metallic oxides
Photovoltaic power generation
ISBN 9780323993678
0323993672
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Metal Oxides for Next-Generation Optoelectronic, Photonic, and Photovoltaic Applications -- Copyright -- Contents -- Contributors -- Series editor biography -- Preface to the series -- Section A: Metal oxide-based transparent electronics -- Chapter 1: Optical transparency combined with electrical conductivity: Challenges and prospects -- Chapter outline -- 1. Introduction -- 2. Optical properties of metal oxides -- 2.1. SnO2 -- 2.2. CuO -- 2.3. ZnO -- 3. Electrical properties of metal oxides -- 3.1. SnO2 -- 3.2. CuO -- 3.3. ZnO -- 4. Application -- 4.1. Sensors -- 4.1.1. Carbon dioxide gas sensors -- 4.1.2. Carbon monoxide gas sensors -- 4.1.3. Oxygen gas sensors -- 4.1.4. Nitric oxide gas sensor -- 4.1.5. Ammonia gas sensors -- 4.1.6. Ozone gas sensors -- 4.2. Batteries -- 4.3. Solar cell -- 4.3.1. CuO solar cells -- 4.3.2. Binary heterojunction solar cells -- 4.3.3. Thin film solar cells -- 4.4. Antennas -- 4.5. Optoelectronic and electronics -- 5. Future challenges and aspects -- 6. Conclusion -- References -- Chapter 2: Transparent ceramics: The material of next generation -- Chapter outline -- 1. Introduction -- 2. What makes the ceramics transparent? -- 3. Classification of transparent ceramics -- 3.1. Metal-oxide ceramics -- 3.1.1. Alumina (Al2O3) -- 3.1.2. Magnesia (MgO) -- 3.1.3. Zirconia (ZrO2) -- 3.1.4. Sesquioxides -- 3.1.5. Yttrium-aluminum garnet (Y3Al5O12) -- 3.1.6. Spinel (MgAl2O4) -- 3.1.7. Transparent ferroelectric ceramics -- 3.1.8. Other oxide ceramics -- 3.2. Nonoxide ceramics -- 3.2.1. Aluminum oxynitride (AlON) and aluminum nitride (AlN) -- 3.2.2. SiAlON and silicon nitride (Si3N4) -- 3.2.3. Fluorides -- 4. Applications of transparent ceramics -- 5. Conclusion -- References -- Chapter 3: Transparent metal oxides in OLED devices -- Chapter outline -- 1. Introduction -- 2. Structure and working principle of OLED.
3. Generations and types of OLEDs -- 4. Deposition techniques -- 4.1. Magnetron sputtering -- 4.2. Pulsed laser deposition -- 4.3. Spray pyrolysis method -- 4.4. Chemical vapor deposition -- 4.5. Sol-gel and dip-coating method -- 5. Optoelectronic properties of TCEs -- 6. Important TCOs -- 6.1. Indium tin oxide (ITO) -- 6.2. Fluorinated tin oxide (FTO) -- 6.3. Zinc oxide (ZnO) -- 6.4. Cadmium oxide (CdO) -- 6.5. Tin oxide (SnO2) -- 6.6. TCO/metal/TCO multilayered structures -- 6.7. Multicomponent-based TCOs -- 7. Surface treatment of TCOs -- 8. TCOs on flexible substrates -- 9. Color tuning with graded ITO thickness -- 10. Conclusions -- Acknowledgments -- References -- Section B: Metal oxide-based phosphors and their applications -- Chapter 4: Metal oxide-based nanophosphors for next generation optoelectronic and display applications -- Chapter outline -- 1. Introduction -- 2. Phosphor and luminescence mechanism -- 3. Silicate phosphor for LED applications -- 4. Basics of silicate -- 5. Method of synthesis of silicate phosphors -- 6. Comparative study of rare-earth/transition metal ion-doped silicate phosphor, synthesis method, characterization, and ... -- 6.1. Rare-earth/transition metal doped calcium silicate (CaSiO3) -- 6.2. Rare-earth/transition metal doped diopside (CaMgSi2O6) -- 6.3. Rare-earth/transition metal doped akermanite (Ca2MgSi2O7) -- 7. Conclusion -- References -- Chapter 5: Metal oxide-based phosphors for white light-emitting diodes -- Chapter outline -- 1. Introduction -- 2. Phosphors and quantum dots -- 3. Structure of quantum light-emitting diodes (QLEDs) -- 4. Spectroscopy of phosphors materials -- 5. Transition metal ions and their role in LED phosphors -- 6. WLEDs requirements -- 7. Tuning and role of dopant -- 8. Metal oxide-based phosphors for WLEDs -- 8.1. Direct white light generation.
8.2. Homojunction and heterojunction WLEDs -- 8.3. Discrete color mixing WLEDs -- 9. Conclusion -- Acknowledgments -- References -- Chapter 6: Thermographic phosphors for remote temperature sensing -- Chapter outline -- 1. Introduction -- 2. Optical temperature sensing -- 2.1. Basic principle of fluorescence intensity ratio-based temperature sensing -- 2.2. Optical thermometry based on Er3+ emission -- 2.3. Optical thermometry based on Ho3+ emission -- 2.4. Optical thermometry based on Tm3+ emission -- 2.5. Optical thermometry based on Nd3+ emission -- 3. Lifetime-based thermometry -- 4. Upconverting nanothermometers in biomedical applications -- 5. Conclusion and prospects -- References -- Chapter 7: Metal oxide-based phosphors for chemical sensors -- Chapter outline -- 1. Introduction -- 2. Metal oxide materials -- 3. Complex metal oxides -- 4. Nano-structured metal oxides -- 5. Synthesis of metal oxide structures -- 6. Phosphors (or luminescent materials) -- 6.1. Oxide type phosphors -- 6.2. Photoluminescence mechanism based on centers, activators, and coactivators -- 6.3. Chemical sensors based on metal oxide-based phosphors -- 6.3.1. Metal oxide-based phosphors for three-band fluorescent lamps -- 6.3.2. Metal oxide-based phosphors for plasma display panels (PDPs) -- 6.3.3. Metal oxide-based phosphors for white light-emitting diodes (wLEDs) -- 6.4. Characteristics of phosphors for LEDs applications -- 6.4.1. Correlated color temperature (CCT) -- 6.4.2. Colorimetry -- 6.4.3. Color rendering index (CRI) -- 6.4.4. Quantum efficiency -- 6.4.5. Factors affecting of LEDs efficiency -- 7. Types of metal oxide-based phosphors -- 7.1. Aluminate-based phosphors -- 7.2. Silicate-based phosphors -- 7.3. Borate-based phosphors -- 7.4. Phosphate-based phosphors -- 7.5. Zincate-based phosphors -- 7.6. Gallate-based phosphors -- 8. Conclusion and future remarks.
References -- Chapter 8: Advancing biosensing with photon upconverting nanoparticles -- Chapter outline -- 1. Introduction -- 2. Background of UCNPs and their synthesis -- 2.1. Thermal decomposition technique -- 2.2. Hydrothermal synthesis -- 2.3. Ionic liquid-based synthesis -- 3. Application of UCNP-based biosensors -- 3.1. Applications of UCNPs as biosensors based on FRET/LRET process -- 3.2. Application of UCNPs as biosensor based on IFE process -- 3.3. Other biosensing applications -- 4. Conclusions -- References -- Section C: Metal oxides for photonic and optoelectronic applications -- Chapter 9: Metal oxide-based LEDs and lasers -- Chapter outline -- 1. Introduction -- 2. General overview of metal oxides -- 3. Synthesis of metal oxides -- 4. Properties of metal oxides -- 5. Application of metal oxides in LEDs and lasers -- 5.1. Application of metal oxides in LEDs -- 5.1.1. Metal oxides in quantum dot LEDs (QD-LEDs) -- 5.1.2. Metal oxides in polymer LEDs (PLEDs) -- 5.2. Application of metal oxides in lasers -- 5.2.1. Metal oxide-based lasers -- 6. Concluding remarks -- Acknowledgment -- References -- Chapter 10: All metal oxide-based photodetectors -- Chapter outline -- 1. Introduction -- 2. Synthesis of miscellaneous forms of MOx for photodetection -- 2.1. Synthesis of MOx QDs -- 2.2. Synthesis of 1D MOx -- 2.2.1. Vapor phase (VP) growth -- 2.2.2. Solution-phase (SP) growth -- 2.2.3. Electrochemical synthesis (ECS) -- 2.2.4. Laser ablation on solid liquid interface -- 2.2.5. Chemical vapor deposition (CVD) -- 2.2.6. Physical vapor deposition (PVD) -- 3. Designing and performance of MOx photosensing devices -- 3.1. Solar blind photodetectors -- 3.2. UV photodetectors -- 3.3. Visible MOx photodetectors -- 4. Effect of harsh conditions on performance of MOx photodetectors -- 5. Applications of MOx photodetectors -- 5.1. Safety and security.
5.2. Process control -- 5.3. The cutting edge -- 5.4. Environmental sensing -- 5.5. Astronomy -- 6. Conclusions -- References -- Chapter 11: Metal oxide charge transport layers for halide perovskite light-emitting diodes -- Chapter outline -- 1. Overview of next-generation halide perovskite light-emitting diodes -- 2. Multi-dimensional hybrid organic-inorganic and all-inorganic halide-based diodes -- 3. Lead-free halide perovskite light-emitting diodes -- 4. Device architectures -- 5. Charge transport layers in perovskite light-emitting diodes -- 6. Characteristics of effective metal oxide charge transport layers -- 6.1. Properties of metal oxide charge transport layers -- 6.2. Interfacial energetics -- 7. Classification of metal oxides in charge transport layers -- 7.1. Binary and ternary metal oxides -- 7.1.1. Metal oxide electron transport layers -- 7.1.2. Metal oxide hole transport layers -- 7.1.3. Bipolar metal oxides -- 8. Recent progress on device engineering using metal oxide layers -- 9. Metal oxide charge transport layer deposition techniques -- 9.1. Solution-processing methods -- 9.2. Vacuum deposition methods -- 9.3. Other deposition methods -- 10. Approaches for optimizing metal oxide charge transport layers -- 10.1. Doping strategy and the use of nanostructures in metal oxide charge transport layers -- 10.2. Surface and interface modification -- 11. Characterization techniques used for metal oxide charge transport layers -- 12. Charge transport dynamics at the metal oxide-perovskite interfaces -- 13. Conclusion, challenges ahead, and perspectives for future work -- References -- Chapter 12: Antireflective coatings and optical filters -- Chapter outline -- 1. Introduction -- 2. Metal oxides as an optical material -- 3. Antireflective coatings -- 3.1. Defining a perfect antireflective coating -- 3.2. Theory of antireflective coatings.
3.3. Types of antireflective coatings and surfaces.
Record Nr. UNINA-9911007014803321
Kumar Vijay  
San Diego : , : Elsevier, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optical Properties of Metal Oxide Nanostructures / / edited by Vijay Kumar, Irfan Ayoub, Vishal Sharma, Hendrik C. Swart
Optical Properties of Metal Oxide Nanostructures / / edited by Vijay Kumar, Irfan Ayoub, Vishal Sharma, Hendrik C. Swart
Autore Kumar Vijay
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (0 pages)
Disciplina 621.36
Altri autori (Persone) AyoubIrfan
SharmaVishal (Associate professor)
SwartHendrik C
Collana Progress in Optical Science and Photonics
Soggetto topico Optics
Optical materials
Nanochemistry
Nanotechnology
Quantum optics
Applied Optics
Optical Materials
Nanoengineering
Quantum Optics
ISBN 9789819956401
9819956404
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. An introduction to the metal oxides -- 2. Optical and electrical switching of thermochromic metal oxide nanostructures -- 3. Optical properties of metal oxide-based perovskite structures -- 4. Optical behavior of metal oxide-based Nanofluids -- 5. Nonlinear optical properties of metal oxide nanostructures.
Record Nr. UNINA-9910746995403321
Kumar Vijay  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Radiation Effects in Polymeric Materials / / edited by Vijay Kumar, Babulal Chaudhary, Vishal Sharma, Kartikey Verma
Radiation Effects in Polymeric Materials / / edited by Vijay Kumar, Babulal Chaudhary, Vishal Sharma, Kartikey Verma
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (417 pages)
Disciplina 620.19204228
Collana Springer Series on Polymer and Composite Materials
Soggetto topico Polymers
Materials—Surfaces
Thin films
Radiation - Safety measures
Radiation—Safety measures
Chemistry, Physical and theoretical
Polymer Sciences
Surfaces and Interfaces, Thin Films
Effects of Radiation/Radiation Protection
Physical Chemistry
ISBN 9783030057701
3030057704
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Effects of Radiation on the Environment -- Radiation Physics and Chemistry of Polymeric Materials -- High-Fluence Ion Implantation of Polymers: Evolution of Structure and Composition -- Ion Beam Modification of Poly(methyl methacrylate) (PMMA) -- Radiation Induced Effects on the Properties of Polymer-Metal Nanocomposites -- Swift Heavy Ion Irradiation Effects on the Properties of Conducting Polymer Nanostructures -- Impact of Etchant Variables on the Track Parameters in CR-39 Polymer Nuclear Track Detector: A Review -- Synthesis of Hydrogels by Modification of Natural Polysaccharides Through Radiation Cross-linking Polymerization for Use in Drug Delivery -- Effects of Radiations on the Properties of Polycarbonate -- Plasma Irradiation of Polymers: Surface to Biological Mitigation -- Effects of Neutron Irradiation on Polymer -- Radiation Cross-linking for the Cable, Rubber and Healthcare Products Industry -- Energy Loss of Swift Heavy Ions: Fundamentals and Theoretical formulations.
Record Nr. UNINA-9910337933203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui