Advanced Materials for Solid State Lighting / / edited by Vijay Kumar, Vishal Sharma, Hendrik C. Swart
| Advanced Materials for Solid State Lighting / / edited by Vijay Kumar, Vishal Sharma, Hendrik C. Swart |
| Autore | Kumar Vijay |
| Edizione | [1st ed. 2023.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 |
| Descrizione fisica | 1 online resource (405 pages) |
| Disciplina | 621.36 |
| Altri autori (Persone) |
SharmaVishal (Associate professor)
SwartHendrik C |
| Collana | Progress in Optical Science and Photonics |
| Soggetto topico |
Optics
Optical materials Nanochemistry Photonics Optical engineering Quantum dots Applied Optics Optical Materials Photonics and Optical Engineering Quantum Dots |
| ISBN |
9789819941452
9819941458 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Rare earth doped inorganic materials for light-emitting applications -- 2. Charge transfer in rare-earth-doped inorganic materials -- 3. ZnO based phosphors materials -- 4. Dynamics of perovskite Titanite luminescent materials -- 5. Rare earth doped Ternary oxides materials for down-conversion and upconversion. |
| Record Nr. | UNINA-9910735796703321 |
Kumar Vijay
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Metal Oxides for Next-Generation Optoelectronic, Photonic, and Photovoltaic Applications
| Metal Oxides for Next-Generation Optoelectronic, Photonic, and Photovoltaic Applications |
| Autore | Kumar Vijay |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | San Diego : , : Elsevier, , 2023 |
| Descrizione fisica | 1 online resource (676 pages) |
| Disciplina | 621.381045 |
| Altri autori (Persone) |
SharmaVishal (Associate professor)
SwartHendrik C DasSubrata |
| Collana | Metal Oxides Series |
| Soggetto topico |
Metallic oxides
Photovoltaic power generation |
| ISBN |
9780323993678
0323993672 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Metal Oxides for Next-Generation Optoelectronic, Photonic, and Photovoltaic Applications -- Copyright -- Contents -- Contributors -- Series editor biography -- Preface to the series -- Section A: Metal oxide-based transparent electronics -- Chapter 1: Optical transparency combined with electrical conductivity: Challenges and prospects -- Chapter outline -- 1. Introduction -- 2. Optical properties of metal oxides -- 2.1. SnO2 -- 2.2. CuO -- 2.3. ZnO -- 3. Electrical properties of metal oxides -- 3.1. SnO2 -- 3.2. CuO -- 3.3. ZnO -- 4. Application -- 4.1. Sensors -- 4.1.1. Carbon dioxide gas sensors -- 4.1.2. Carbon monoxide gas sensors -- 4.1.3. Oxygen gas sensors -- 4.1.4. Nitric oxide gas sensor -- 4.1.5. Ammonia gas sensors -- 4.1.6. Ozone gas sensors -- 4.2. Batteries -- 4.3. Solar cell -- 4.3.1. CuO solar cells -- 4.3.2. Binary heterojunction solar cells -- 4.3.3. Thin film solar cells -- 4.4. Antennas -- 4.5. Optoelectronic and electronics -- 5. Future challenges and aspects -- 6. Conclusion -- References -- Chapter 2: Transparent ceramics: The material of next generation -- Chapter outline -- 1. Introduction -- 2. What makes the ceramics transparent? -- 3. Classification of transparent ceramics -- 3.1. Metal-oxide ceramics -- 3.1.1. Alumina (Al2O3) -- 3.1.2. Magnesia (MgO) -- 3.1.3. Zirconia (ZrO2) -- 3.1.4. Sesquioxides -- 3.1.5. Yttrium-aluminum garnet (Y3Al5O12) -- 3.1.6. Spinel (MgAl2O4) -- 3.1.7. Transparent ferroelectric ceramics -- 3.1.8. Other oxide ceramics -- 3.2. Nonoxide ceramics -- 3.2.1. Aluminum oxynitride (AlON) and aluminum nitride (AlN) -- 3.2.2. SiAlON and silicon nitride (Si3N4) -- 3.2.3. Fluorides -- 4. Applications of transparent ceramics -- 5. Conclusion -- References -- Chapter 3: Transparent metal oxides in OLED devices -- Chapter outline -- 1. Introduction -- 2. Structure and working principle of OLED.
3. Generations and types of OLEDs -- 4. Deposition techniques -- 4.1. Magnetron sputtering -- 4.2. Pulsed laser deposition -- 4.3. Spray pyrolysis method -- 4.4. Chemical vapor deposition -- 4.5. Sol-gel and dip-coating method -- 5. Optoelectronic properties of TCEs -- 6. Important TCOs -- 6.1. Indium tin oxide (ITO) -- 6.2. Fluorinated tin oxide (FTO) -- 6.3. Zinc oxide (ZnO) -- 6.4. Cadmium oxide (CdO) -- 6.5. Tin oxide (SnO2) -- 6.6. TCO/metal/TCO multilayered structures -- 6.7. Multicomponent-based TCOs -- 7. Surface treatment of TCOs -- 8. TCOs on flexible substrates -- 9. Color tuning with graded ITO thickness -- 10. Conclusions -- Acknowledgments -- References -- Section B: Metal oxide-based phosphors and their applications -- Chapter 4: Metal oxide-based nanophosphors for next generation optoelectronic and display applications -- Chapter outline -- 1. Introduction -- 2. Phosphor and luminescence mechanism -- 3. Silicate phosphor for LED applications -- 4. Basics of silicate -- 5. Method of synthesis of silicate phosphors -- 6. Comparative study of rare-earth/transition metal ion-doped silicate phosphor, synthesis method, characterization, and ... -- 6.1. Rare-earth/transition metal doped calcium silicate (CaSiO3) -- 6.2. Rare-earth/transition metal doped diopside (CaMgSi2O6) -- 6.3. Rare-earth/transition metal doped akermanite (Ca2MgSi2O7) -- 7. Conclusion -- References -- Chapter 5: Metal oxide-based phosphors for white light-emitting diodes -- Chapter outline -- 1. Introduction -- 2. Phosphors and quantum dots -- 3. Structure of quantum light-emitting diodes (QLEDs) -- 4. Spectroscopy of phosphors materials -- 5. Transition metal ions and their role in LED phosphors -- 6. WLEDs requirements -- 7. Tuning and role of dopant -- 8. Metal oxide-based phosphors for WLEDs -- 8.1. Direct white light generation. 8.2. Homojunction and heterojunction WLEDs -- 8.3. Discrete color mixing WLEDs -- 9. Conclusion -- Acknowledgments -- References -- Chapter 6: Thermographic phosphors for remote temperature sensing -- Chapter outline -- 1. Introduction -- 2. Optical temperature sensing -- 2.1. Basic principle of fluorescence intensity ratio-based temperature sensing -- 2.2. Optical thermometry based on Er3+ emission -- 2.3. Optical thermometry based on Ho3+ emission -- 2.4. Optical thermometry based on Tm3+ emission -- 2.5. Optical thermometry based on Nd3+ emission -- 3. Lifetime-based thermometry -- 4. Upconverting nanothermometers in biomedical applications -- 5. Conclusion and prospects -- References -- Chapter 7: Metal oxide-based phosphors for chemical sensors -- Chapter outline -- 1. Introduction -- 2. Metal oxide materials -- 3. Complex metal oxides -- 4. Nano-structured metal oxides -- 5. Synthesis of metal oxide structures -- 6. Phosphors (or luminescent materials) -- 6.1. Oxide type phosphors -- 6.2. Photoluminescence mechanism based on centers, activators, and coactivators -- 6.3. Chemical sensors based on metal oxide-based phosphors -- 6.3.1. Metal oxide-based phosphors for three-band fluorescent lamps -- 6.3.2. Metal oxide-based phosphors for plasma display panels (PDPs) -- 6.3.3. Metal oxide-based phosphors for white light-emitting diodes (wLEDs) -- 6.4. Characteristics of phosphors for LEDs applications -- 6.4.1. Correlated color temperature (CCT) -- 6.4.2. Colorimetry -- 6.4.3. Color rendering index (CRI) -- 6.4.4. Quantum efficiency -- 6.4.5. Factors affecting of LEDs efficiency -- 7. Types of metal oxide-based phosphors -- 7.1. Aluminate-based phosphors -- 7.2. Silicate-based phosphors -- 7.3. Borate-based phosphors -- 7.4. Phosphate-based phosphors -- 7.5. Zincate-based phosphors -- 7.6. Gallate-based phosphors -- 8. Conclusion and future remarks. References -- Chapter 8: Advancing biosensing with photon upconverting nanoparticles -- Chapter outline -- 1. Introduction -- 2. Background of UCNPs and their synthesis -- 2.1. Thermal decomposition technique -- 2.2. Hydrothermal synthesis -- 2.3. Ionic liquid-based synthesis -- 3. Application of UCNP-based biosensors -- 3.1. Applications of UCNPs as biosensors based on FRET/LRET process -- 3.2. Application of UCNPs as biosensor based on IFE process -- 3.3. Other biosensing applications -- 4. Conclusions -- References -- Section C: Metal oxides for photonic and optoelectronic applications -- Chapter 9: Metal oxide-based LEDs and lasers -- Chapter outline -- 1. Introduction -- 2. General overview of metal oxides -- 3. Synthesis of metal oxides -- 4. Properties of metal oxides -- 5. Application of metal oxides in LEDs and lasers -- 5.1. Application of metal oxides in LEDs -- 5.1.1. Metal oxides in quantum dot LEDs (QD-LEDs) -- 5.1.2. Metal oxides in polymer LEDs (PLEDs) -- 5.2. Application of metal oxides in lasers -- 5.2.1. Metal oxide-based lasers -- 6. Concluding remarks -- Acknowledgment -- References -- Chapter 10: All metal oxide-based photodetectors -- Chapter outline -- 1. Introduction -- 2. Synthesis of miscellaneous forms of MOx for photodetection -- 2.1. Synthesis of MOx QDs -- 2.2. Synthesis of 1D MOx -- 2.2.1. Vapor phase (VP) growth -- 2.2.2. Solution-phase (SP) growth -- 2.2.3. Electrochemical synthesis (ECS) -- 2.2.4. Laser ablation on solid liquid interface -- 2.2.5. Chemical vapor deposition (CVD) -- 2.2.6. Physical vapor deposition (PVD) -- 3. Designing and performance of MOx photosensing devices -- 3.1. Solar blind photodetectors -- 3.2. UV photodetectors -- 3.3. Visible MOx photodetectors -- 4. Effect of harsh conditions on performance of MOx photodetectors -- 5. Applications of MOx photodetectors -- 5.1. Safety and security. 5.2. Process control -- 5.3. The cutting edge -- 5.4. Environmental sensing -- 5.5. Astronomy -- 6. Conclusions -- References -- Chapter 11: Metal oxide charge transport layers for halide perovskite light-emitting diodes -- Chapter outline -- 1. Overview of next-generation halide perovskite light-emitting diodes -- 2. Multi-dimensional hybrid organic-inorganic and all-inorganic halide-based diodes -- 3. Lead-free halide perovskite light-emitting diodes -- 4. Device architectures -- 5. Charge transport layers in perovskite light-emitting diodes -- 6. Characteristics of effective metal oxide charge transport layers -- 6.1. Properties of metal oxide charge transport layers -- 6.2. Interfacial energetics -- 7. Classification of metal oxides in charge transport layers -- 7.1. Binary and ternary metal oxides -- 7.1.1. Metal oxide electron transport layers -- 7.1.2. Metal oxide hole transport layers -- 7.1.3. Bipolar metal oxides -- 8. Recent progress on device engineering using metal oxide layers -- 9. Metal oxide charge transport layer deposition techniques -- 9.1. Solution-processing methods -- 9.2. Vacuum deposition methods -- 9.3. Other deposition methods -- 10. Approaches for optimizing metal oxide charge transport layers -- 10.1. Doping strategy and the use of nanostructures in metal oxide charge transport layers -- 10.2. Surface and interface modification -- 11. Characterization techniques used for metal oxide charge transport layers -- 12. Charge transport dynamics at the metal oxide-perovskite interfaces -- 13. Conclusion, challenges ahead, and perspectives for future work -- References -- Chapter 12: Antireflective coatings and optical filters -- Chapter outline -- 1. Introduction -- 2. Metal oxides as an optical material -- 3. Antireflective coatings -- 3.1. Defining a perfect antireflective coating -- 3.2. Theory of antireflective coatings. 3.3. Types of antireflective coatings and surfaces. |
| Record Nr. | UNINA-9911007014803321 |
Kumar Vijay
|
||
| San Diego : , : Elsevier, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Optical Properties of Metal Oxide Nanostructures / / edited by Vijay Kumar, Irfan Ayoub, Vishal Sharma, Hendrik C. Swart
| Optical Properties of Metal Oxide Nanostructures / / edited by Vijay Kumar, Irfan Ayoub, Vishal Sharma, Hendrik C. Swart |
| Autore | Kumar Vijay |
| Edizione | [1st ed. 2023.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 |
| Descrizione fisica | 1 online resource (0 pages) |
| Disciplina | 621.36 |
| Altri autori (Persone) |
AyoubIrfan
SharmaVishal (Associate professor) SwartHendrik C |
| Collana | Progress in Optical Science and Photonics |
| Soggetto topico |
Optics
Optical materials Nanochemistry Nanotechnology Quantum optics Applied Optics Optical Materials Nanoengineering Quantum Optics |
| ISBN |
9789819956401
9819956404 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. An introduction to the metal oxides -- 2. Optical and electrical switching of thermochromic metal oxide nanostructures -- 3. Optical properties of metal oxide-based perovskite structures -- 4. Optical behavior of metal oxide-based Nanofluids -- 5. Nonlinear optical properties of metal oxide nanostructures. |
| Record Nr. | UNINA-9910746995403321 |
Kumar Vijay
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Radiation Effects in Polymeric Materials / / edited by Vijay Kumar, Babulal Chaudhary, Vishal Sharma, Kartikey Verma
| Radiation Effects in Polymeric Materials / / edited by Vijay Kumar, Babulal Chaudhary, Vishal Sharma, Kartikey Verma |
| Edizione | [1st ed. 2019.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
| Descrizione fisica | 1 online resource (417 pages) |
| Disciplina | 620.19204228 |
| Collana | Springer Series on Polymer and Composite Materials |
| Soggetto topico |
Polymers
Materials—Surfaces Thin films Radiation - Safety measures Radiation—Safety measures Chemistry, Physical and theoretical Polymer Sciences Surfaces and Interfaces, Thin Films Effects of Radiation/Radiation Protection Physical Chemistry |
| ISBN |
9783030057701
3030057704 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Effects of Radiation on the Environment -- Radiation Physics and Chemistry of Polymeric Materials -- High-Fluence Ion Implantation of Polymers: Evolution of Structure and Composition -- Ion Beam Modification of Poly(methyl methacrylate) (PMMA) -- Radiation Induced Effects on the Properties of Polymer-Metal Nanocomposites -- Swift Heavy Ion Irradiation Effects on the Properties of Conducting Polymer Nanostructures -- Impact of Etchant Variables on the Track Parameters in CR-39 Polymer Nuclear Track Detector: A Review -- Synthesis of Hydrogels by Modification of Natural Polysaccharides Through Radiation Cross-linking Polymerization for Use in Drug Delivery -- Effects of Radiations on the Properties of Polycarbonate -- Plasma Irradiation of Polymers: Surface to Biological Mitigation -- Effects of Neutron Irradiation on Polymer -- Radiation Cross-linking for the Cable, Rubber and Healthcare Products Industry -- Energy Loss of Swift Heavy Ions: Fundamentals and Theoretical formulations. |
| Record Nr. | UNINA-9910337933203321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||