top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Clean and Renewable Energy Production
Clean and Renewable Energy Production
Autore Kumar Adesh
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (555 pages)
Altri autori (Persone) PachauriRupendra Kumar
MondalAmit Kumar
SinghVishal Kumar
SharmaAmit Kumar
ISBN 1-394-17480-2
1-394-17479-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Vegetable Seed Oils as Biofuel: Need, Motivation, and Research Identifications -- 1.1 Introduction to Vegetable Oils -- 1.2 Motivation -- 1.3 Need of Research -- 1.3.1 Biodiesel Considerations -- 1.3.2 Energy Balance and Security -- 1.3.3 Air Quality -- 1.3.4 Engine Function -- 1.3.5 Safety -- 1.4 Detailed Survey -- 1.5 Identification of the Research Gaps -- 1.5.1 Toxicity -- 1.5.2 Biodegradability -- 1.6 Conclusions -- References -- Chapter 2 Methodology and Instrumentation for Biofuel with Study on Cashew Nut Shell Liquid -- 2.1 Methodology -- 2.2 Procedure -- 2.2.1 Common Points -- 2.3 Fourier Transform Infrared Spectroscopy -- 2.4 Gas Chromatography-Mass Spectrometry -- 2.5 Nuclear Magnetic Resonance -- 2.6 CNSL Study -- 2.7 Conclusions -- References -- Chapter 3 Emerging Technologies for Sustainable Energy Applications -- 3.1 Introduction -- 3.2 Carbon Dioxide Sequestration -- 3.2.1 Biological Carbon Sequestration -- 3.2.2 Geological Carbon Sequestration -- 3.2.3 Technological Carbon Sequestration -- 3.2.4 Hydrate-Based CO2 Sequestration Technology -- 3.2.5 Carbon Sinks and Types -- 3.2.5.1 Estuarine Ecology as Sediment Carbon -- 3.2.5.2 Mangroves and Mudflat Soils as Carbon Sink -- 3.2.5.3 Tidal Marsh Soils as Carbon Sink -- 3.2.5.4 Soils of Coastal Agroecosystem as Carbon Sink -- 3.2.5.5 Sediments of Marine Coastal Ecologies as Carbon Sink -- 3.2.6 CO2 Sequestration Utilization in Enhanced Oil Recovery -- 3.3 Carbon Capture, Utilization, and Storage -- 3.3.1 Global CCUS Development -- 3.3.2 Risk Analysis of CCUS -- 3.4 Renewable Energy -- 3.4.1 Solar Energy -- 3.4.2 Hydro Energy -- 3.4.3 Geothermal Energy -- 3.4.4 Biomass Energy -- 3.4.5 Wind Energy -- 3.5 Conclusion -- References -- Chapter 4 Affordable and Clean Energy: Natural Gas Hydrates and Hydrogen Storage.
4.1 Introduction -- 4.2 Gas Hydrates -- 4.2.1 Extraction Methodologies -- 4.2.1.1 Thermal Stimulation Method -- 4.2.1.2 Depressurization Method -- 4.2.1.3 Inhibitor Injection Method -- 4.2.1.4 Gas Exchange Method -- 4.2.2 Geological Hazards -- 4.2.2.1 Hydrate-Associated Risks for Oil and Gas Exploitation -- 4.2.3 Sustainable Applications -- 4.2.4 Solidified Natural Gas -- 4.2.5 Seawater Desalination -- 4.2.6 CO2 Sequestration and Methane Recovery -- 4.2.7 Gas Separation -- 4.3 Hydrogen Energy -- 4.3.1 Types of H2 -- 4.3.2 Hydrogen Storage -- 4.3.2.1 Compressed Gas -- 4.3.2.2 Underground Hydrogen Storage -- 4.3.2.3 Liquid Hydrogen -- 4.3.2.4 Solid Storage -- 4.3.3 H2 as Fuel -- 4.3.4 Industrial Applications of H2 -- 4.4 Recent Advancement Toward Clean Energy Applications -- 4.5 Conclusion -- References -- Chapter 5 Wind and Solar PV System-Based Power Generation: Imperative Role of Hybrid Renewable Energy Technology -- 5.1 Introduction -- 5.2 Renewable Energy for Sustainable Development -- 5.3 Global Energy Scenario -- 5.4 Solar Energy Potential -- 5.5 Wind Potential for Power Generation -- 5.6 Hybrid Renewable Energy Systems -- 5.7 Pros and Cons of the Hybrid Renewable Energy System -- 5.7.1 Pros of the Hybrid Renewable Energy System -- 5.7.2 Cons of the Hybrid Renewable Energy System -- 5.8 Conclusion -- References -- Chapter 6 A Systematic Review of the Last Decade for Advances in Photosynthetic Microbial Fuel Cells with Bioelectricity Generation -- 6.1 Introduction -- 6.2 Background -- 6.3 Methodology -- 6.4 Study Selection Criteria -- 6.5 Configurations and Performance Evaluation of Photosynthetic Microbial Fuel Cells -- 6.5.1 Algal-Based p-MFC -- 6.5.2 Plant-Microbial Fuel Cells or P-MFCs -- 6.6 Outlook -- Data Availability Statement -- Funding -- Conflict of Interest -- References.
Chapter 7 Hydrothermal Liquefaction as a Sustainable Strategy for Integral Valorization of Agricultural Waste -- 7.1 Introduction -- 7.2 Generation of Biofuels -- 7.3 Biomass Conversion Routes -- 7.4 HTL Reaction Mechanism -- 7.5 HTL Process Yield Calculations -- 7.6 HTL Advantage Over Pyrolysis -- 7.6.1 Energy Content from the Biomass -- 7.6.2 Bio-Oil and Bio-Coal Yields -- 7.6.3 Oxygen Content in Bio-Oil -- 7.6.4 Carbon Content Utilization -- 7.6.5 No Pretreatment and Drying -- 7.6.6 Energy Saving -- 7.7 Types of Reactors for the Hydrothermal Liquefaction Process -- 7.7.1 Batch Reactor -- 7.7.2 Continuous Reactor -- 7.7.2.1 Continuous Plug Flow Reactor -- 7.7.2.2 Continuous Stirred Tank Reactor -- 7.8 Influence of Operating Parameters -- 7.8.1 Biomass Type -- 7.8.2 Operating Temperature -- 7.8.3 Heating Rate -- 7.8.4 Residence Time -- 7.8.5 Pressure -- 7.8.6 Type of Catalyst -- 7.9 Product Distribution and Evaluation -- 7.9.1 Liquid (Bio-Oil) -- 7.9.2 Solid (Hydrochar) -- 7.9.3 Aqueous Water and Gases -- 7.10 Potential Applications of HTL Products -- 7.11 Challenges and Limitations of the HTL Process -- 7.12 Techno-Economic and Environmental Analysis -- 7.13 Conclusions -- References -- Chapter 8 Imperative Role of Proton Exchange Membrane Fuel Cell System and Hydrogen Energy Storage for Modern Electric Vehicle Transportation: Challenges and Future Perspectives -- 8.1 Introduction -- 8.2 Modeling of the PEMFC System -- 8.3 Electrical Vehicle Categories -- 8.4 Hydrogen Energy Storage -- 8.4.1 Hydrogen Energy Production: Approaches with Challenges -- 8.4.2 Methods of Hydrogen Energy Storage: Approaches and Challenges -- 8.5 Future Scope, Challenges, and Benefits of FCEVs -- 8.6 Pros and Cons of Electric Vehicles in the Aspect of Modern Transportation System -- 8.7 MATLAB/Simulink Study of FC-Powered Electric Drive System -- 8.8 Conclusion.
References -- Chapter 9 Ocean Energy-A Myriad of Opportunities in the Renewable Energy Sector -- 9.1 Introduction -- 9.2 International Agencies Promoting Ocean Energy Projects -- 9.3 Ocean Energy Potential -- 9.4 Types of Ocean Energy -- 9.5 Tidal Energy -- 9.5.1 Tidal Stream Generator -- 9.5.2 Tidal Stream Barrage -- 9.5.3 Tidal Lagoon -- 9.5.4 Dynamic Tidal Power -- 9.6 Tidal Currents -- 9.7 Wave Energy -- 9.8 Ocean Thermal Energy Conversion -- 9.9 Salinity Gradient -- 9.10 Marine Energy Projects in India -- 9.10.1 Case Study 1 -- 9.10.2 Case Study 2 -- 9.11 Conclusion -- Author Contributions -- References -- Chapter 10 Performance of 5 Years of ESE Lightning Protection System: A Review -- Sachin Kumar, Gagan Singh and Nafees Ahamad Introduction -- Theoretical Background -- External Lightning Protection Structure for the PV Power Plant -- Results and Analysis -- Conclusion -- References -- Chapter 11 Solar Photovoltaic System-Based Power Generation: Imperative Role of Artificial Intelligence and Machine Learning -- 11.1 Introduction -- 11.2 Solar Energy Power Generation Scenario in the Indian Context -- 11.3 Applications of AI and ML in Solar PV Systems -- 11.3.1 Maintenance Prediction -- 11.3.2 Optimization of Orientation of the Solar Panels to Maximize Energy Generation -- 11.3.3 Weather Forecasting for PV System Power Assessment -- 11.3.4 Forecasting of PV System Performance During Dust Accumulation -- 11.3.5 Solar Parameter Prediction -- 11.3.6 Fault Detection Using Artificial Intelligence -- 11.4 Pros and Cons of AI and ML Techniques in Solar PV System -- 11.5 Application of GA-Based Optimal Placement of PV Modules in an Array to Reduce PSCs -- 11.5.1 Modeling of PV System -- 11.5.2 Genetic Algorithm-Based PV Array Reconfiguration -- 11.5.3 Shading Scenarios and Electrical Performance -- 11.6 Conclusion -- References.
Chapter 12 Waste to Energy Technologies for Energy Recovery -- 12.1 Introduction -- 12.2 Preparation Methods -- 12.3 Carbonization and Activation -- 12.3.1 Uses of Carbonization -- 12.3.2 Uses of Activation -- 12.3.2.1 Phosphoric Acid Activation -- 12.3.2.2 Zinc Chloride Activation -- 12.3.2.3 Potassium Hydroxide Activation -- 12.3.2.4 Potassium Carbonate Activation -- 12.3.2.5 Nitric Acid Activation -- 12.4 Electrode Materials Extracted from Biowastes -- 12.4.1 Carbon Nanotube -- 12.4.2 Graphene Oxide -- 12.4.3 Carbon Aerogel -- 12.4.4 Activated Carbon -- 12.5 Energy Storage Applications -- 12.6 Importance of Electrolyte -- 12.7 Conclusions -- References -- Chapter 13 A Review of Electrolysis Techniques to Produce Hydrogen for a Futuristic Hydrogen Economy -- 13.1 Introduction -- 13.1.1 Chemistry Behind Electrolysis -- 13.1.2 Step 1 -- 13.1.3 Step 2 -- 13.1.4 Anion Exchange Membrane Water Electrolysis -- 13.2 Methodology -- 13.2.1 Search Strategy -- 13.2.2 Search Scope -- 13.2.3 Search Method -- 13.2.4 Search String -- 13.2.5 Study Selection Criteria -- 13.3 Configurations and Performance Evaluation of AEM Electrolyzer -- 13.4 Scope for Improvements -- 13.5 Conclusion -- References -- Chapter 14 Prospects of Sustainability for Carbon Footprint Reduction -- 14.1 Introduction -- 14.2 Context and Outcomes of the United Nations Climate Change Framework -- 14.3 Monitoring Direct and Indirect Carbon Emissions -- 14.4 Sustainable Alternatives to Reduce Carbon Footprints -- 14.4.1 Policies for Reducing Carbon Footprints -- 14.4.2 Technologies and Strategies Designed for Specific Sectors -- 14.4.3 Innovative Carbon Reduction Strategies and Technologies -- 14.4.3.1 Buildings and Cities -- 14.4.3.2 Transportation -- 14.4.4 Societal Contribution Toward Carbon Reduction -- 14.5 Carbon Elimination from the Atmosphere -- 14.6 Outlook -- Conflict of Interest.
References.
Record Nr. UNINA-9910830535203321
Kumar Adesh  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Clean and Renewable Energy Production
Clean and Renewable Energy Production
Autore Kumar Adesh
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (555 pages)
Altri autori (Persone) PachauriRupendra Kumar
MondalAmit Kumar
SinghVishal Kumar
SharmaAmit Kumar
ISBN 1-394-17480-2
1-394-17479-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Vegetable Seed Oils as Biofuel: Need, Motivation, and Research Identifications -- 1.1 Introduction to Vegetable Oils -- 1.2 Motivation -- 1.3 Need of Research -- 1.3.1 Biodiesel Considerations -- 1.3.2 Energy Balance and Security -- 1.3.3 Air Quality -- 1.3.4 Engine Function -- 1.3.5 Safety -- 1.4 Detailed Survey -- 1.5 Identification of the Research Gaps -- 1.5.1 Toxicity -- 1.5.2 Biodegradability -- 1.6 Conclusions -- References -- Chapter 2 Methodology and Instrumentation for Biofuel with Study on Cashew Nut Shell Liquid -- 2.1 Methodology -- 2.2 Procedure -- 2.2.1 Common Points -- 2.3 Fourier Transform Infrared Spectroscopy -- 2.4 Gas Chromatography-Mass Spectrometry -- 2.5 Nuclear Magnetic Resonance -- 2.6 CNSL Study -- 2.7 Conclusions -- References -- Chapter 3 Emerging Technologies for Sustainable Energy Applications -- 3.1 Introduction -- 3.2 Carbon Dioxide Sequestration -- 3.2.1 Biological Carbon Sequestration -- 3.2.2 Geological Carbon Sequestration -- 3.2.3 Technological Carbon Sequestration -- 3.2.4 Hydrate-Based CO2 Sequestration Technology -- 3.2.5 Carbon Sinks and Types -- 3.2.5.1 Estuarine Ecology as Sediment Carbon -- 3.2.5.2 Mangroves and Mudflat Soils as Carbon Sink -- 3.2.5.3 Tidal Marsh Soils as Carbon Sink -- 3.2.5.4 Soils of Coastal Agroecosystem as Carbon Sink -- 3.2.5.5 Sediments of Marine Coastal Ecologies as Carbon Sink -- 3.2.6 CO2 Sequestration Utilization in Enhanced Oil Recovery -- 3.3 Carbon Capture, Utilization, and Storage -- 3.3.1 Global CCUS Development -- 3.3.2 Risk Analysis of CCUS -- 3.4 Renewable Energy -- 3.4.1 Solar Energy -- 3.4.2 Hydro Energy -- 3.4.3 Geothermal Energy -- 3.4.4 Biomass Energy -- 3.4.5 Wind Energy -- 3.5 Conclusion -- References -- Chapter 4 Affordable and Clean Energy: Natural Gas Hydrates and Hydrogen Storage.
4.1 Introduction -- 4.2 Gas Hydrates -- 4.2.1 Extraction Methodologies -- 4.2.1.1 Thermal Stimulation Method -- 4.2.1.2 Depressurization Method -- 4.2.1.3 Inhibitor Injection Method -- 4.2.1.4 Gas Exchange Method -- 4.2.2 Geological Hazards -- 4.2.2.1 Hydrate-Associated Risks for Oil and Gas Exploitation -- 4.2.3 Sustainable Applications -- 4.2.4 Solidified Natural Gas -- 4.2.5 Seawater Desalination -- 4.2.6 CO2 Sequestration and Methane Recovery -- 4.2.7 Gas Separation -- 4.3 Hydrogen Energy -- 4.3.1 Types of H2 -- 4.3.2 Hydrogen Storage -- 4.3.2.1 Compressed Gas -- 4.3.2.2 Underground Hydrogen Storage -- 4.3.2.3 Liquid Hydrogen -- 4.3.2.4 Solid Storage -- 4.3.3 H2 as Fuel -- 4.3.4 Industrial Applications of H2 -- 4.4 Recent Advancement Toward Clean Energy Applications -- 4.5 Conclusion -- References -- Chapter 5 Wind and Solar PV System-Based Power Generation: Imperative Role of Hybrid Renewable Energy Technology -- 5.1 Introduction -- 5.2 Renewable Energy for Sustainable Development -- 5.3 Global Energy Scenario -- 5.4 Solar Energy Potential -- 5.5 Wind Potential for Power Generation -- 5.6 Hybrid Renewable Energy Systems -- 5.7 Pros and Cons of the Hybrid Renewable Energy System -- 5.7.1 Pros of the Hybrid Renewable Energy System -- 5.7.2 Cons of the Hybrid Renewable Energy System -- 5.8 Conclusion -- References -- Chapter 6 A Systematic Review of the Last Decade for Advances in Photosynthetic Microbial Fuel Cells with Bioelectricity Generation -- 6.1 Introduction -- 6.2 Background -- 6.3 Methodology -- 6.4 Study Selection Criteria -- 6.5 Configurations and Performance Evaluation of Photosynthetic Microbial Fuel Cells -- 6.5.1 Algal-Based p-MFC -- 6.5.2 Plant-Microbial Fuel Cells or P-MFCs -- 6.6 Outlook -- Data Availability Statement -- Funding -- Conflict of Interest -- References.
Chapter 7 Hydrothermal Liquefaction as a Sustainable Strategy for Integral Valorization of Agricultural Waste -- 7.1 Introduction -- 7.2 Generation of Biofuels -- 7.3 Biomass Conversion Routes -- 7.4 HTL Reaction Mechanism -- 7.5 HTL Process Yield Calculations -- 7.6 HTL Advantage Over Pyrolysis -- 7.6.1 Energy Content from the Biomass -- 7.6.2 Bio-Oil and Bio-Coal Yields -- 7.6.3 Oxygen Content in Bio-Oil -- 7.6.4 Carbon Content Utilization -- 7.6.5 No Pretreatment and Drying -- 7.6.6 Energy Saving -- 7.7 Types of Reactors for the Hydrothermal Liquefaction Process -- 7.7.1 Batch Reactor -- 7.7.2 Continuous Reactor -- 7.7.2.1 Continuous Plug Flow Reactor -- 7.7.2.2 Continuous Stirred Tank Reactor -- 7.8 Influence of Operating Parameters -- 7.8.1 Biomass Type -- 7.8.2 Operating Temperature -- 7.8.3 Heating Rate -- 7.8.4 Residence Time -- 7.8.5 Pressure -- 7.8.6 Type of Catalyst -- 7.9 Product Distribution and Evaluation -- 7.9.1 Liquid (Bio-Oil) -- 7.9.2 Solid (Hydrochar) -- 7.9.3 Aqueous Water and Gases -- 7.10 Potential Applications of HTL Products -- 7.11 Challenges and Limitations of the HTL Process -- 7.12 Techno-Economic and Environmental Analysis -- 7.13 Conclusions -- References -- Chapter 8 Imperative Role of Proton Exchange Membrane Fuel Cell System and Hydrogen Energy Storage for Modern Electric Vehicle Transportation: Challenges and Future Perspectives -- 8.1 Introduction -- 8.2 Modeling of the PEMFC System -- 8.3 Electrical Vehicle Categories -- 8.4 Hydrogen Energy Storage -- 8.4.1 Hydrogen Energy Production: Approaches with Challenges -- 8.4.2 Methods of Hydrogen Energy Storage: Approaches and Challenges -- 8.5 Future Scope, Challenges, and Benefits of FCEVs -- 8.6 Pros and Cons of Electric Vehicles in the Aspect of Modern Transportation System -- 8.7 MATLAB/Simulink Study of FC-Powered Electric Drive System -- 8.8 Conclusion.
References -- Chapter 9 Ocean Energy-A Myriad of Opportunities in the Renewable Energy Sector -- 9.1 Introduction -- 9.2 International Agencies Promoting Ocean Energy Projects -- 9.3 Ocean Energy Potential -- 9.4 Types of Ocean Energy -- 9.5 Tidal Energy -- 9.5.1 Tidal Stream Generator -- 9.5.2 Tidal Stream Barrage -- 9.5.3 Tidal Lagoon -- 9.5.4 Dynamic Tidal Power -- 9.6 Tidal Currents -- 9.7 Wave Energy -- 9.8 Ocean Thermal Energy Conversion -- 9.9 Salinity Gradient -- 9.10 Marine Energy Projects in India -- 9.10.1 Case Study 1 -- 9.10.2 Case Study 2 -- 9.11 Conclusion -- Author Contributions -- References -- Chapter 10 Performance of 5 Years of ESE Lightning Protection System: A Review -- Sachin Kumar, Gagan Singh and Nafees Ahamad Introduction -- Theoretical Background -- External Lightning Protection Structure for the PV Power Plant -- Results and Analysis -- Conclusion -- References -- Chapter 11 Solar Photovoltaic System-Based Power Generation: Imperative Role of Artificial Intelligence and Machine Learning -- 11.1 Introduction -- 11.2 Solar Energy Power Generation Scenario in the Indian Context -- 11.3 Applications of AI and ML in Solar PV Systems -- 11.3.1 Maintenance Prediction -- 11.3.2 Optimization of Orientation of the Solar Panels to Maximize Energy Generation -- 11.3.3 Weather Forecasting for PV System Power Assessment -- 11.3.4 Forecasting of PV System Performance During Dust Accumulation -- 11.3.5 Solar Parameter Prediction -- 11.3.6 Fault Detection Using Artificial Intelligence -- 11.4 Pros and Cons of AI and ML Techniques in Solar PV System -- 11.5 Application of GA-Based Optimal Placement of PV Modules in an Array to Reduce PSCs -- 11.5.1 Modeling of PV System -- 11.5.2 Genetic Algorithm-Based PV Array Reconfiguration -- 11.5.3 Shading Scenarios and Electrical Performance -- 11.6 Conclusion -- References.
Chapter 12 Waste to Energy Technologies for Energy Recovery -- 12.1 Introduction -- 12.2 Preparation Methods -- 12.3 Carbonization and Activation -- 12.3.1 Uses of Carbonization -- 12.3.2 Uses of Activation -- 12.3.2.1 Phosphoric Acid Activation -- 12.3.2.2 Zinc Chloride Activation -- 12.3.2.3 Potassium Hydroxide Activation -- 12.3.2.4 Potassium Carbonate Activation -- 12.3.2.5 Nitric Acid Activation -- 12.4 Electrode Materials Extracted from Biowastes -- 12.4.1 Carbon Nanotube -- 12.4.2 Graphene Oxide -- 12.4.3 Carbon Aerogel -- 12.4.4 Activated Carbon -- 12.5 Energy Storage Applications -- 12.6 Importance of Electrolyte -- 12.7 Conclusions -- References -- Chapter 13 A Review of Electrolysis Techniques to Produce Hydrogen for a Futuristic Hydrogen Economy -- 13.1 Introduction -- 13.1.1 Chemistry Behind Electrolysis -- 13.1.2 Step 1 -- 13.1.3 Step 2 -- 13.1.4 Anion Exchange Membrane Water Electrolysis -- 13.2 Methodology -- 13.2.1 Search Strategy -- 13.2.2 Search Scope -- 13.2.3 Search Method -- 13.2.4 Search String -- 13.2.5 Study Selection Criteria -- 13.3 Configurations and Performance Evaluation of AEM Electrolyzer -- 13.4 Scope for Improvements -- 13.5 Conclusion -- References -- Chapter 14 Prospects of Sustainability for Carbon Footprint Reduction -- 14.1 Introduction -- 14.2 Context and Outcomes of the United Nations Climate Change Framework -- 14.3 Monitoring Direct and Indirect Carbon Emissions -- 14.4 Sustainable Alternatives to Reduce Carbon Footprints -- 14.4.1 Policies for Reducing Carbon Footprints -- 14.4.2 Technologies and Strategies Designed for Specific Sectors -- 14.4.3 Innovative Carbon Reduction Strategies and Technologies -- 14.4.3.1 Buildings and Cities -- 14.4.3.2 Transportation -- 14.4.4 Societal Contribution Toward Carbon Reduction -- 14.5 Carbon Elimination from the Atmosphere -- 14.6 Outlook -- Conflict of Interest.
References.
Record Nr. UNINA-9910877460903321
Kumar Adesh  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Renewable Energy Innovations : Biofuels, Solar, and Other Technologies / / Alok Kumar Patel and Amit Kumar Sharma, editors
Renewable Energy Innovations : Biofuels, Solar, and Other Technologies / / Alok Kumar Patel and Amit Kumar Sharma, editors
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (403 pages)
Disciplina 333.794
Soggetto topico Renewable energy sources
ISBN 9781119785675
1-119-78570-7
1-119-78571-5
1-119-78569-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Table of Contents -- Series Page -- Title Page -- Copyright Page -- 1 Microbial Fuel Cells - A Sustainable Approach to Utilize Industrial Effluents for Electricity Generation -- Abbreviation -- 1.1 Introduction -- 1.2 History of Microbial Fuel Cell -- 1.3 Principle of Microbial Fuel Cell -- 1.4 Material Used in MFC System -- 1.5 Electrogenic Microorganisms -- 1.6 Electron Transport Mechanism in MFCs -- 1.7 Configuration of MFC -- 1.8 Applications of Microbial Fuel Cell -- 1.9 Future Perspectives -- 1.10 Conclusion -- References -- 2 Nanotechnologies in the Renewable Energy Sector -- 2.1 Introduction -- 2.2 Fundamentals of Renewable Energy Sources -- 2.3 Storage of Energy in Electrical Devices -- 2.4 Nanotechnology in Energy Storage Devices -- 2.5 Nanomaterials for Rechargeable Batteries -- 2.6 Nanomaterials in Fuel Cells -- 2.7 Conclusion -- 2.8 Future Scope -- References -- 3 Sustainable Approach in Utilizing Bioenergy Commonly for Industrial Zones by Limiting Overall Emission Footprint -- 3.1 Introduction -- 3.2 Co-Firing Plants in Small- and Medium-Scale Industries -- 3.3 Impact of Usage of Biogas for Steam Generation -- 3.4 Case Scenarios for Promoting Industrial Uptake -- 3.5 Conclusion -- Acknowledgment -- References -- 4 Recycling of Plastic Waste into Transportation Fuels and Value-Added Products -- 4.1 Introduction -- 4.2 Plastic Waste: A Global Challenge -- 4.3 Future Projection of the Waste Plastic -- 4.4 Plastic Waste Effect on Environment and Ecology -- 4.5 Plastic Waste Management -- 4.6 Parameters Affect the Pyrolysis Process -- 4.7 Value-Added Products from Plastic Waste Pyrolysis -- 4.8 Application in Transportation Sector -- 4.9 Conclusion -- References -- 5 An Outlook on Oxygenated Fuel for Transportation -- 5.1 Introduction -- 5.2 Oxygenated Fuel -- References.
6 Greenhouse Gas (GHG) Emissions and Its Mitigation Technology in Transportation Sector -- 6.1 Introduction -- 6.2 Mitigation Technologies -- 6.3 Conclusion -- References -- 7 Advanced Techniques for Bio-Methanol Production -- 7.1 Introduction -- 7.2 Scope of Biofuel -- 7.3 Types of Biofuels -- 7.4 Why Biomethanol -- 7.5 Methanol Properties -- 7.6 Source of Bio-Methanol -- 7.7 Production of Methanol -- 7.8 Gasification -- 7.9 Pyrolysis -- 7.10 Liquefaction -- 7.11 Syngas to Methanol -- 7.12 Biomethanol from MSW -- 7.13 Energy Efficiency of a Process -- 7.14 Biological Conversion of Methanol -- 7.15 Anaerobic Digestion -- 7.16 Methanotrophic Bacteria -- 7.17 Production of Methanol from Methanotrophic Bacteria (Methanotrophs) -- 7.18 Large-Scale Production of Methanol from Waste Biomass -- 7.19 Challenges Associated with Methanol Production Using Methanotrophic Bacteria at the Industrial Level -- 7.20 Role of Ammonia-Oxidizing Bacteria (AOB) -- 7.21 Future Prospective and Conclusion -- References -- 8 Biodiesel Production: Advance Techniques and Future Prospective -- 8.1 Introduction -- 8.2 Biodiesel and Its Properties -- 8.3 Synthesis of Biodiesel -- 8.4 Modern Methods for the Development of Prospects -- 8.5 Future Prospects and Policies -- 8.6 Conclusions -- References -- 9 Biomass to Biofuel: Biomass Sources, Pretreatment Methods and Production Strategies -- 9.1 Introduction -- 9.2 Biomass Sources in India -- 9.3 Lignocellulosic Biomass -- 9.4 Biomass Pretreatment Methods -- 9.5 Biomass to Biofuel Conversion Technologies -- 9.6 Types of Biofuel -- 9.7 Conclusion -- References -- 10 Opportunity and Challenges in Biofuel Productions through Solar Thermal Technologies -- 10.1 Introduction -- 10.2 Solar Pyrolysis of Biomass Feedstocks -- 10.3 Production of Bio-Oil by Solar Pyrolysis -- 10.4 Conclusions -- References.
11 Algae Biofuels: A Promising Fuel of the Transport Sector -- 11.1 Introduction -- 11.2 Biofuels in the Transport Sector -- 11.3 Modes of Biofuels in Practice -- 11.4 Algae Biofuel - A Promising Energy Source -- 11.5 Microalgae Growth Conditions -- 11.6 Harvesting of Algae -- 11.7 Biofuel Extraction Techniques from Microalgae -- 11.8 Algae Biofuel as a Transport Fuel -- 11.9 Conclusion -- References -- 12 A Review of Chemical and Physical Parameters of Biodiesel vs. Diesel: Their Environmental and Economic Impact -- 12.1 Introduction -- 12.2 Historical Background -- 12.3 Current Status of Biodiesel -- 12.4 Sources of Biodiesel -- 12.5 Advantages of Biodiesel Over Diesel -- 12.6 Biodiesel as Safer and Cleaner Fuel -- 12.7 Major Negative Aspects to Use of Biodiesel -- 12.8 Chemical and Physical Properties of Biodiesel -- 12.9 Biodiesel Applications -- 12.10 Conclusion and Future Prospective -- Acknowledgments -- References -- 13 An Indian Viewpoint on Promoting Hydrogen-Powered Vehicles: Focussing on the Scope of Fuel Cells -- List of Abbreviations -- 13.1 Introduction -- 13.2 Can Hydrogen Be the Way Forward? -- 13.3 The Inception of Fuel Cells (FCs) and PEMFCs in Particular -- 13.4 FCEVs v/s Existing Automobile Infrastructure in India -- 13.5 The Green Policy Push for Hydrogen and Associated Technologies in India -- 13.6 Pervasive Challenges of PEMFC Technology -- 13.7 Conclusion and Recommendations -- Acknowledgments -- References -- 14 Microalgae as Source of Bioenergy -- 14.1 Introduction -- 14.2 Microalgae Bioenergy Production Options -- 14.3 Conclusions -- Acknowledgement -- References -- 15 Hazards and Environmental Issues in Biodiesel Industry -- 15.1 Introduction -- 15.2 Life Cycle Analysis of Biodiesel -- 15.3 Life Cycle Analysis of Biodiesel -- 15.4 Future Risk and Opportunities -- 15.5 Future Risk and Opportunities -- 15.6 Conclusion.
References -- Index -- Also of Interest -- End User License Agreement.
Record Nr. UNINA-9910830572503321
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sustainable Production Innovations : Bioremediation and Other Biotechnologies
Sustainable Production Innovations : Bioremediation and Other Biotechnologies
Autore Patel Alok Kumar
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (455 pages)
Altri autori (Persone) SharmaAmit Kumar
ISBN 1-119-79288-6
1-119-79287-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Chapter 1 Biolubricant -- 1.1 Introduction -- 1.2 Biolubricant Base Oil -- 1.2.1 Edible and Non-Edible Oils -- 1.2.2 Waste Cooking Oils -- 1.2.3 Microbial Oils -- 1.2.4 Lignocellulose Base Oil -- 1.3 Upgrading Process for Biolubricant Base Oil -- 1.3.1 Esterification/Transesterification -- 1.3.2 Epoxidation, Ring Opening, and Acetylation -- 1.3.3 Selective Hydrogenation -- 1.4 Biolubricant Additive -- 1.4.1 Types of Lubricant Additives -- 1.4.1.1 Viscosity Index Improver -- 1.4.1.2 Antioxidant Agent -- 1.4.1.3 Extreme Pressure Anti-Wear Agent -- 1.4.1.4 Pour Point Depressant -- 1.4.1.5 Others Lubricant Additives -- 1.4.2 Green Lubricating Additive -- 1.4.2.1 Vegetable Oil Based Lubricant Additives -- 1.4.2.2 Lignin Additives for Lubricant Formulation -- 1.4.2.3 Cellulose Additives for Lubricant Formulation -- 1.4.2.4 Amino Acids for Green Lubricating Additive -- 1.5 Perspective -- References -- Chapter 2 Microbial Degradation of Plastics -- 2.1 Introduction -- 2.2 Plastic Polymers and Their Applications -- 2.2.1 Improved Consumer Health and Safety -- 2.2.2 Energy Savings -- 2.2.3 Material Conservation -- 2.2.4 Plastic Polymers and Their Future -- 2.3 Challenges in Plastic Waste Management -- 2.3.1 Problems Associated with Plastic Waste -- 2.3.2 Challenges Found in Plastic Waste Disposal -- 2.3.3 How Plastics Find Their Way into the Ecosystem -- 2.4 Environmental Hazards Caused by Plastics -- 2.4.1 Dissemination of Microplastics -- 2.4.2 Dissemination Route to Groundwater and Becoming Air Borne -- 2.4.3 Impacts of Microplastics on Soil Organisms -- 2.5 Microbial Plastic Degradation -- 2.5.1 Degradation of Plastics -- 2.5.2 Breakdown of Plastics by Microbes -- 2.5.3 Microbial Biomolecules and Plastic Degradation -- 2.5.4 Factors Affecting Plastic Biomineralization.
2.6 Identification Methods of Microplastics -- 2.6.1 Visual Inspection Method -- 2.6.2 Detection Methods Based on Polymer Chemical Structure -- 2.6.2.1 Microplastic Identification with Artificial Intelligence Approach -- 2.7 Conclusion -- References -- Chapter 3 Biotechnological Advances in Cosmetic Industry -- 3.1 Introduction -- 3.2 Polysaccharides from Macroalgae -- 3.2.1 Fucoidans -- 3.2.2 Ulvan -- 3.2.3 Alginate -- 3.2.4 Carrageenan -- 3.2.5 Porphyran -- 3.3 Polysaccharides from Microalgae -- 3.3.1 UV Protective Compounds -- 3.4 Polyphenols -- 3.5 Pigments -- 3.5.1 Chlorophyll -- 3.5.2 Carotenoids -- 3.6 Vitamins -- 3.7 Peptides and Amino Acids -- 3.8 Current Scenario of Use of Algal Bio-Actives in Cosmetics -- 3.9 Other Cosmetic Advances -- 3.9.1 Growth Factors -- 3.9.2 Enzymes -- 3.9.3 Stem Cells -- 3.9.4 Peptides -- 3.9.5 miRNAs -- 3.9.6 Personalized Skincare -- 3.10 Conclusion -- References -- Chapter 4 Large Scale Applications of Nanomaterials for Water Treatment: Challenges, Future Prospects, and the Visionary Future -- 4.1 Introduction -- 4.2 Vast Scientific Doctrine and the March of Science in Nanomaterials and Engineered Nanomaterials -- 4.3 The Scientific Vision of Bioremediation -- 4.4 Applications of Nanomaterials for Water Treatment -- 4.5 The Scientific Vision Behind Environmental Sustainability, Environmental Remediation, and the Road Ahead -- 4.6 Recent Scientific Advancements in the Field of Nanomaterial Applications in Water Treatment -- 4.7 Recent Scientific Advancements in the Field of Nanotechnology -- 4.8 Arsenic and Heavy Metal Groundwater Remediation, Application of Nanomaterials, and the Road Ahead -- 4.9 Conventional and Non-Conventional Environmental Engineering Techniques, the March of Engineering Science, and the Vast Vision for the Future.
4.10 The Status of Environmental Engineering Research in the Global Scenario and the Research Forays Ahead -- 4.11 Future Scientific Recommendations and Future Flow of Scientific Thoughts -- 4.12 Conclusion and Scientific and Engineering Perspectives -- References -- Chapter 5 Green Technologies for Pesticide Contaminated Soil and Water -- 5.1 Introduction -- 5.2 Effect of Pesticides on Soil and Water Environment -- 5.2.1 Deterioration of Water Quality Due to Pesticides -- 5.2.2 Degradation of Soil Quality Due to Pesticides -- 5.3 Bacterial Degradation and Bioremediation of Pesticides from Polluted and Contaminated Soil and Water -- 5.3.1 Bioventing -- 5.3.2 Biosparging -- 5.3.3 Bioaugementation -- 5.3.4 Land Farming -- 5.3.5 Biopiling -- 5.4 Phytoremediation: An Effective Alternative Method -- 5.4.1 Phytotransformation -- 5.4.2 Phytovolatilization -- 5.4.3 Rhizoremediation -- 5.5 Novel Approaches for More Effective Bioremediation -- 5.5.1 Pesticides Biodegradation Using Recombinant Strains -- 5.5.2 Microbial Enzymes and Pathways Involved in Pesticide Degradation -- 5.6 Challenges and Future Prospects -- 5.7 Conclusion -- References -- Chapter 6 Microalgae as Source of High Value Compounds -- 6.1 Introduction -- 6.2 Produced Biocompounds and High-Value Products -- 6.2.1 Lipids -- 6.2.2 Protein and Amino Acids -- 6.2.3 Carbohydrates -- 6.2.4 Vitamins Production -- 6.2.5 Pigments -- 6.3 Conclusions -- Acknowledgements -- References -- Chapter 7 Advance Biotechnological, Pharmaceutical, and Medicinal Applications of Chitinases -- Abbreviation -- 7.1 Introduction -- 7.2 Classification of Chitinases -- 7.3 Application of Chitinases -- 7.3.1 Medicinal Importance of Chitinases -- 7.3.2 Chitinase as Aging in COVID-19 -- 7.3.3 Role of Chitinases as Bioinsecticide -- 7.3.4 Uses of AMCase for Asthma -- 7.3.5 Chitinases as Diagnostic Biomarker.
7.3.6 CHI3L2 as Biochemical Marker for Osteoarthritis -- 7.3.7 Chitinases as Antitumor Drugs -- 7.3.8 Chitinase in Trichomoniasis Therapy -- 7.4 Future Prospects -- Acknowledgements -- References -- Chapter 8 Microbial Degradation of Plastics: Current Perspectives and Challenges -- 8.1 Introduction -- 8.2 Biodegradation of Natural Plastics -- 8.2.1 Polyhydroxyalkanoates Biodegradation -- 8.2.2 Polylactic Acid Biodegradation -- 8.3 Biodegradation of Synthetic Plastics -- 8.3.1 Polythene or Polyethylene Biodegradation -- 8.3.2 Polyurethane Biodegradation -- 8.3.3 Polyvinyl Chloride Biodegradation -- 8.3.4 Polystyrene Biodegradation -- 8.3.5 Polypropylene Biodegradation -- 8.3.6 Polyethylene Terephthalate Biodegradation -- 8.4 Conclusion and Prospects -- References -- Chapter 9 Microbial Application in Food Industry -- 9.1 Introduction -- 9.1.1 Production of Enzymes -- 9.1.2 Production of Organic Acids -- 9.2 Production of Colouring Agents and Flavours in Food Industry -- 9.3 Microbial Production of Flavour -- 9.4 Production of Polyhydric Alcohols -- 9.5 Production of Vitamins -- 9.5.1 Fat-Soluble Vitamins -- 9.5.2 Water Soluble Vitamins -- 9.6 Production of Lipids and Glycolipids -- 9.7 Microbes as Food -- 9.8 Solid State Fermentation and Its Application in Food Industry -- 9.9 Non-Beneficial or Food Borne Pathogens Detection -- 9.9.1 Nucleic Acid-Based Pathogen Detection -- 9.9.2 Immunological Based Methods -- 9.9.3 Biosensor Based Methods -- 9.9.3.1 Electrochemical Based Biosensors -- 9.9.3.2 Optical-Based Biosensors -- 9.9.3.3 Mass Based Biosensors -- 9.10 Conclusions -- References -- Chapter 10 Biotechnological Approaches of Algae -- 10.1 Introduction -- 10.2 Algal Biotechnology: Emerging Areas of Applications -- 10.2.1 Bio-Energy -- 10.2.1.1 Bio-Oil -- 10.2.1.2 Bio-Diesel -- 10.2.1.3 Bio-Gas -- 10.2.2 Food Supplements -- 10.2.3 Pigments.
10.2.4 Bioplastic: Alternatives to Petrochemical-Based Plastics -- 10.2.5 Biocleanser -- 10.3 Algal Biotechnology: Emerging Areas of Technology -- 10.3.1 Algal Cultivation -- 10.3.2 Harvesting and Downstream Processing -- 10.3.3 Genetic Engineering -- 10.3.4 Genetic Screening: Phenomics -- 10.4 Conclusion -- References -- Chapter 11 Cellulases: An Approach Towards Current Advances in Biofuel Conversion and Future Prospects -- 11.1 Introduction -- 11.2 Source of Cellulases -- 11.3 Cellulase Structure -- 11.4 Cellulase Mechanism -- 11.5 Production of Cellulases -- 11.6 Application of Cellulases -- 11.7 Production of Bioethanol from Lignocellulose -- 11.8 Conclusion -- 11.8.1 Future Prospects -- Acknowledgements -- References -- Chapter 12 Extraction of Biofuels and Valuable Products (Essential Fatty Acids) from Microalgae: The Greenhouse Gas Emissions -- 12.1 Introduction -- 12.2 Why is Biofuel Necessary? -- 12.3 Biofuel Production Technology -- 12.4 Conversion of Microalgae to Biofuel -- 12.4.1 Cultivation of Microalgae -- 12.4.2 Harvesting -- 12.4.3 Drying and Dewatering -- 12.4.4 Extraction of Oil -- 12.5 Lipid Extraction Techniques -- 12.6 Principal Products Acquired from Microalgae -- 12.6.1 Bioactive Compounds -- 12.6.1.1 Proteins from Microalgae -- 12.6.1.2 Pigments Obtained from Microalgal Biomass: â-Carotene, Lycopene, Astaxanthin, and Phycobiliproteins -- 12.6.1.3 Compounds with Antioxidant Function -- 12.6.1.4 Compounds with Antimicrobial Activity -- 12.6.1.5 Compounds with Anti-Inflammatory Action -- 12.6.1.6 Compounds with Health Promoting Functions -- 12.6.1.7 Compounds with Potential for Degenerative Diseases -- 12.6.1.8 Secondary Metabolites with Potential Commercial Value -- 12.7 Conclusion -- References -- Chapter 13 Bioprocessing of Agricultural and Forest Waste -- 13.1 Introduction -- 13.2 Agricultural Residues -- 13.3 Forest Waste.
13.4 Biomass Composition.
Record Nr. UNINA-9910876911603321
Patel Alok Kumar  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui