Superconductivity : basics and applications to magnets / / R. G. Sharma
| Superconductivity : basics and applications to magnets / / R. G. Sharma |
| Autore | Sharma R. G. |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (649 pages) |
| Disciplina | 537.623 |
| Collana | Springer series in materials science |
| Soggetto topico | Superconductivity |
| ISBN | 3-030-75672-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface to Second Edition -- Acknowledgements -- Contents -- About the Author -- 1 Introduction -- 1.1 Why Low Temperature Is so Exciting? -- 1.2 How to Conduct Experiment at Low Temperatures? -- 1.3 Gas Liquefaction -- 1.3.1 Isenthalpic Process -- 1.3.2 Isentropic Process -- 1.3.3 The Linde-Hampson Process -- 1.3.4 The Claude Process -- 1.3.5 Liquefaction of Helium (1908) -- 1.3.6 Collins Liquefaction Cycle -- 1.4 Discovery of Superconductivity-A Fall-Out of Helium Liquefaction -- References -- 2 The Phenomenon of Superconductivity and Type II Superconductors -- 2.1 Electrical Conduction in Metals -- 2.2 The Phenomenon of Superconductivity -- 2.3 The Critical Magnetic Field -- 2.4 The Meissner Effect (Field Expulsion) -- 2.4.1 Perfect Diamagnetism -- 2.4.2 The Penetration Depth -- 2.4.3 Magnetization in Superconductors -- 2.4.4 The Intermediate State -- 2.5 Two-Fluid Model -- 2.6 Thermodynamics of Superconductors -- 2.6.1 The Gibbs Free Energy -- 2.6.2 Specific Heat -- 2.6.3 Phase Transition -- 2.7 Thermal Conductivity -- 2.8 Thermoelectric Power -- 2.9 The Energy Gap -- 2.10 The Isotope Effect -- 2.11 Flux Quantization -- 2.12 The Concept of Coherence Length and Positive Surface Energy -- 2.13 Determination of Energy Gap (Single Particle Tunnelling) -- 2.14 The Josephson Effect (Pair Tunnelling) -- 2.14.1 DC Josephson Effect -- 2.14.2 AC Josephson Effect -- 2.14.3 The SQUID -- 2.15 Type II Superconductors-Abrikosov's Concept of Negative Surface Energy -- 2.15.1 Lower and Upper Critical Magnetic Field -- 2.15.2 The Mixed State -- 2.15.3 Current Flow and Mixed State -- 2.15.4 Measuring Transport Critical Current -- 2.15.5 Magnetization in Type II Superconductors -- 2.15.6 Irreversible Magnetization -- 2.15.7 The Bean's Critical-State Model and Magnetization -- 2.15.8 The Kim Model -- 2.15.9 Flux Creep.
2.15.10 Critical Current by Magnetization Method -- 2.16 Surface Superconductivity-Critical Magnetic Field Bc3 -- 2.17 Paramagnetic Limit -- References -- 3 High-Temperature Cuprate Superconductors and Later Discoveries -- 3.1 Discovery of Superconductivity in La-Ba-Cu-O System (Tc = 35 K) -- 3.2 The Y-Ba-Cu-O (YBCO) System-First Superconductor with Tc Above 77 K -- 3.2.1 Method of Synthesis of YBCO -- 3.2.2 Some Peculiar Properties of YBCO -- 3.2.3 YBCO Wires and Tapes -- 3.3 The Bi-Sr-Ca-Cu-O (BSCCO) System -- 3.3.1 Bi-2223 Wires and Tapes -- 3.3.2 First Generation (1G)-BSCCO Current Leads -- 3.4 The Tl-Ba-Ca-Cu-O System -- 3.5 The Hg-Ba-Ca-Cu-O System -- 3.6 Flux Vortices, Critical Current Density and Flux Pinning in High-Tc Superconductors -- 3.7 Critical Surface of High-Tc Superconductors -- 3.8 The Depairing Current -- 3.9 Grain Boundary Problem in High-Tc Superconductors -- 3.10 Discovery of Superconductivity in Magnesium Diboride (MgB2) -- 3.10.1 Peculiar Properties of MgB2 -- 3.10.2 Crystal and Electronic Structure and Energy Gaps in MgB2 -- 3.10.3 The Boron Isotope Effect -- 3.10.4 Some Physical Properties of MgB2 -- 3.10.5 Summery of the Various Properties of MgB2 -- 3.11 The Discovery of Iron-Based Superconductors-LaFeAsO 1111 Compounds -- 3.11.1 High Tc (> -- 50 K) in Sm and Nd-Based Oxypnictides -- 3.11.2 Superconductivity in K-Doped BaFe2As2 122 Compounds -- 3.11.3 Superconductivity in Iron-Chalcogenides -- 3.12 Superconductivity at 203 K in Sulphur Hydride (H3S) -- 3.13 Superconductivity at Room Temperature (Tc = 288 K @ 267 GPa) -- References -- 4 A Review of Theories of Superconductivity -- 4.1 A Chronology of Theories of Superconductivity -- 4.2 Londons' Theory -- 4.3 The Ginzburg-Landau Theory -- 4.3.1 Flux Exclusion and Zero Electrical Resistance -- 4.3.2 Flux Quantization -- 4.3.3 GL-Parameter and Type II Superconductors. 4.3.4 Josephson Effect -- 4.4 The BCS Theory of Superconductivity -- 4.4.1 The Cooper Pairs -- 4.4.2 Formulation of the Microscopic Theory -- 4.4.3 Transition Temperature -- 4.4.4 The Energy Gap -- 4.4.5 Critical Field and Specific Heat -- 4.5 Anomalous Properties of the Cuprates -- 4.5.1 Temperature-Hole Concentration Phase Diagram -- 4.5.2 Normal State Resistivity -- 4.5.3 Presence of Pseudo-Gap in Highly Underdoped Superconductors -- 4.5.4 Comparison with Conventional Metallic Superconductors -- 4.6 Possible Theories of HTS -- 4.6.1 The Resonating Valence Bond (RVB) Theory -- 4.6.2 The Spin Fluctuation Theory -- 4.6.3 Revisiting BCS Theory to Explain HTS Superconductors -- 4.6.4 Positive Feedback Mechanism for High-Tc Superconductivity -- 4.6.5 Pairing in Strongly Correlated Electron Systems -- 4.6.6 Three-Band d-p Model -- 4.7 Theories of Newly Emerged Superconductors -- 4.7.1 Theory of Superconductivity in MgB2 -- 4.7.2 Theory of Iron-Based Superconductors (IBSC) -- 4.7.3 Superconductivity in Sulphur Hydride (H3S) -- References -- 5 Conventional Practical Superconductors -- 5.1 Superconductors Useful for Magnet Application -- 5.2 Thermal and Electromagnetic Instability Problem-The Multifilamentary Superconductors -- 5.2.1 Degradation and Flux Jump -- 5.2.2 The Adiabatic or Intrinsic Stability -- 5.2.3 The Dynamic and Cryostatic Stability -- 5.2.4 Multifilamentary Superconducting Wires -- 5.2.5 Twisting and Transposition of the Multifilamentary Wires -- 5.3 Losses in Practical Superconductors -- 5.3.1 Hysteresis Losses -- 5.3.2 Losses Due to Filament Coupling -- 5.3.3 Proximity Coupling Losses -- 5.3.4 Losses Due to Eddy Currents -- 5.3.5 Losses Due to Self-field Effect -- 5.3.6 Losses Due to Transport Current -- 5.3.7 AC Losses in High Temperature Oxide Superconductors -- 5.4 AC Loss Measurement Methods -- 5.4.1 Electric Method. 5.4.2 Magnetization Method -- 5.4.3 Calorimetric Method -- 5.5 Practical Superconductors-The Ubiquitous Nb-Ti Superconductor -- 5.5.1 Emergence of Nb-Ti as a Superconductor for Magnets -- 5.5.2 The Phase Diagram of Nb-Ti -- 5.5.3 Optimization of Jc in Nb-Ti Wires -- 5.5.4 Developments in the Fabrication Process of MF Cu/Nb-Ti Composite Conductors -- 5.5.5 Use of Diffusion Barrier and Filament Spacing -- 5.5.6 Nb-Ti Cable-in-Conduit Conductors (CICC) -- 5.6 The Discovery of A-15 Nb3Sn Superconductor -- 5.6.1 Emergence of Nb3Sn as High-Field Superconductor -- 5.6.2 The Bronze Process -- 5.6.3 Parameters to Be Optimized -- 5.6.4 Elemental Additions to Nb3Sn -- 5.6.5 The Internal Tin (IT) Process -- 5.6.6 The Jelly Roll Process -- 5.6.7 The Rod Restacking Process (RRP) -- 5.6.8 The Powder-in-Tube (PIT) Process -- 5.6.9 Conductor for High-Luminosity LHC Quadrupole Magnets -- 5.6.10 The In Situ Process -- 5.7 The A-15 Nb3Al MF Superconductor -- 5.7.1 Phase Diagram of Nb-Al System -- 5.7.2 Mass Production of JR Nb3Al Conductors by JAERI for ITER -- 5.7.3 The Rapid Heating, Quench and Transformation (RHQT) Technique -- 5.8 The V3Ga Tapes and Multifilamentary Wires -- 5.8.1 The V-Ga Binary Phase Diagram -- 5.8.2 V3Ga Diffusion Tapes -- 5.8.3 Bronze-Processed V3Ga MF Conductors -- 5.8.4 V3Ga Conductor by PIT Method -- References -- 6 Practical Cuprate Superconductors -- 6.1 Introduction -- 6.2 2G REBCO Tape Wires (Coated Conductors) -- 6.2.1 Enhancement of Jc Through Heavy Doping -- 6.2.2 Development of Flexible Fine Round REBCO Wires with High Mechanical Strength -- 6.2.3 Next Generation High-Current REBCO STAR Wire for Compact Magnets -- 6.2.4 High Engineering Current Density (Je) in REBCO Wires -- 6.2.5 REBCO Deposition on 30 µm Hastelloy Substrate and High Je -- 6.2.6 High-Current CORC Cables -- 6.2.7 REBCO-CORC Cable-In-Conduit Conductors (CORC-CICC). 6.2.8 The Roebel Bar Cable -- 6.2.9 HTS CroCo Cable Development for DEMO Fusion Reactor -- 6.2.10 Supremacy of REBCO-Coated Conductors -- 6.3 The Promising Bi2Sr2CaCu2Ox (Bi-2212) Practical Wires and Cables -- 6.3.1 Development of a 10 kA Bi-2212 Conductor -- 6.3.2 Bubble Formation in PIT Bi-2212 Wire Filaments and Current Blockage -- 6.3.3 High Jc in Round Bi-2212 Wires Through Over-Pressure Heat Treatment -- 6.3.4 Isotropic Round OP Bi-2212 Wires Generate a Field of 33.6 T -- 6.3.5 AC Loss in Bi-2212 Cable-In-Conduit Conductors -- 6.3.6 PIT-OPHT Bi-2212 Rutherford Cable -- 6.4 The Bi-2223 Conductors -- 6.4.1 The Controlled Over-Pressure (CT-OP) Processed Bi-2223 Superconductors -- 6.4.2 Suitability of DI-Bi-2223 for High-Field Magnets -- 6.4.3 Low AC Loss Bi-2223 Conductors -- 6.4.4 A Comparison Between B-2212 and Bi-2223 Wires -- References -- 7 Practical Magnesium Diboride (MgB2) Superconductor -- 7.1 Introduction -- 7.2 Preparation of Bulk MgB2, Single Crystal and Thin Film -- 7.3 MgB2 Wires, Tapes and Cables -- 7.3.1 Different Variants of PIT Technique-The In Situ PIT Technique -- 7.3.2 The Ex Situ PIT Technique -- 7.3.3 The Internal Magnesium Diffusion (IMD) Technique -- 7.3.4 Enhancement of Jc Through Optimization of Process Parameters and Doping -- 7.3.5 A Hybrid IMD/PIT Technique -- 7.4 Low AC Loss MgB2 Wires/Cables -- 7.5 Rutherford MgB2 Cables -- 7.5.1 Rutherford Cable with Al-Al2O3 Metal-Matrix Composite (MMC) Sheath -- 7.6 Thin Film Route for MgB2 Conductors -- 7.7 An Upswing in the Use of MgB2 for Applications -- References -- 8 Iron-Based Practical Superconductors -- 8.1 General Features of Iron-Based Superconductors -- 8.2 Structure and Phase Diagrams of IBSC Compounds -- 8.3 Electronic and Structural Phase Diagram of LnOFeAs, 1111 Compounds -- 8.4 Superconductivity in LaFeCoAsO Induced by Co Doping. 8.4.1 Superconductivity in Co-Doped Sm(FeCo)AsO Compounds. |
| Record Nr. | UNINA-9910488715703321 |
Sharma R. G.
|
||
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Superconductivity : basics and applications to magnets / / R. G. Sharma
| Superconductivity : basics and applications to magnets / / R. G. Sharma |
| Autore | Sharma R. G. |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (649 pages) |
| Disciplina | 537.623 |
| Collana | Springer series in materials science |
| Soggetto topico | Superconductivity |
| ISBN | 3-030-75672-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface to Second Edition -- Acknowledgements -- Contents -- About the Author -- 1 Introduction -- 1.1 Why Low Temperature Is so Exciting? -- 1.2 How to Conduct Experiment at Low Temperatures? -- 1.3 Gas Liquefaction -- 1.3.1 Isenthalpic Process -- 1.3.2 Isentropic Process -- 1.3.3 The Linde-Hampson Process -- 1.3.4 The Claude Process -- 1.3.5 Liquefaction of Helium (1908) -- 1.3.6 Collins Liquefaction Cycle -- 1.4 Discovery of Superconductivity-A Fall-Out of Helium Liquefaction -- References -- 2 The Phenomenon of Superconductivity and Type II Superconductors -- 2.1 Electrical Conduction in Metals -- 2.2 The Phenomenon of Superconductivity -- 2.3 The Critical Magnetic Field -- 2.4 The Meissner Effect (Field Expulsion) -- 2.4.1 Perfect Diamagnetism -- 2.4.2 The Penetration Depth -- 2.4.3 Magnetization in Superconductors -- 2.4.4 The Intermediate State -- 2.5 Two-Fluid Model -- 2.6 Thermodynamics of Superconductors -- 2.6.1 The Gibbs Free Energy -- 2.6.2 Specific Heat -- 2.6.3 Phase Transition -- 2.7 Thermal Conductivity -- 2.8 Thermoelectric Power -- 2.9 The Energy Gap -- 2.10 The Isotope Effect -- 2.11 Flux Quantization -- 2.12 The Concept of Coherence Length and Positive Surface Energy -- 2.13 Determination of Energy Gap (Single Particle Tunnelling) -- 2.14 The Josephson Effect (Pair Tunnelling) -- 2.14.1 DC Josephson Effect -- 2.14.2 AC Josephson Effect -- 2.14.3 The SQUID -- 2.15 Type II Superconductors-Abrikosov's Concept of Negative Surface Energy -- 2.15.1 Lower and Upper Critical Magnetic Field -- 2.15.2 The Mixed State -- 2.15.3 Current Flow and Mixed State -- 2.15.4 Measuring Transport Critical Current -- 2.15.5 Magnetization in Type II Superconductors -- 2.15.6 Irreversible Magnetization -- 2.15.7 The Bean's Critical-State Model and Magnetization -- 2.15.8 The Kim Model -- 2.15.9 Flux Creep.
2.15.10 Critical Current by Magnetization Method -- 2.16 Surface Superconductivity-Critical Magnetic Field Bc3 -- 2.17 Paramagnetic Limit -- References -- 3 High-Temperature Cuprate Superconductors and Later Discoveries -- 3.1 Discovery of Superconductivity in La-Ba-Cu-O System (Tc = 35 K) -- 3.2 The Y-Ba-Cu-O (YBCO) System-First Superconductor with Tc Above 77 K -- 3.2.1 Method of Synthesis of YBCO -- 3.2.2 Some Peculiar Properties of YBCO -- 3.2.3 YBCO Wires and Tapes -- 3.3 The Bi-Sr-Ca-Cu-O (BSCCO) System -- 3.3.1 Bi-2223 Wires and Tapes -- 3.3.2 First Generation (1G)-BSCCO Current Leads -- 3.4 The Tl-Ba-Ca-Cu-O System -- 3.5 The Hg-Ba-Ca-Cu-O System -- 3.6 Flux Vortices, Critical Current Density and Flux Pinning in High-Tc Superconductors -- 3.7 Critical Surface of High-Tc Superconductors -- 3.8 The Depairing Current -- 3.9 Grain Boundary Problem in High-Tc Superconductors -- 3.10 Discovery of Superconductivity in Magnesium Diboride (MgB2) -- 3.10.1 Peculiar Properties of MgB2 -- 3.10.2 Crystal and Electronic Structure and Energy Gaps in MgB2 -- 3.10.3 The Boron Isotope Effect -- 3.10.4 Some Physical Properties of MgB2 -- 3.10.5 Summery of the Various Properties of MgB2 -- 3.11 The Discovery of Iron-Based Superconductors-LaFeAsO 1111 Compounds -- 3.11.1 High Tc (> -- 50 K) in Sm and Nd-Based Oxypnictides -- 3.11.2 Superconductivity in K-Doped BaFe2As2 122 Compounds -- 3.11.3 Superconductivity in Iron-Chalcogenides -- 3.12 Superconductivity at 203 K in Sulphur Hydride (H3S) -- 3.13 Superconductivity at Room Temperature (Tc = 288 K @ 267 GPa) -- References -- 4 A Review of Theories of Superconductivity -- 4.1 A Chronology of Theories of Superconductivity -- 4.2 Londons' Theory -- 4.3 The Ginzburg-Landau Theory -- 4.3.1 Flux Exclusion and Zero Electrical Resistance -- 4.3.2 Flux Quantization -- 4.3.3 GL-Parameter and Type II Superconductors. 4.3.4 Josephson Effect -- 4.4 The BCS Theory of Superconductivity -- 4.4.1 The Cooper Pairs -- 4.4.2 Formulation of the Microscopic Theory -- 4.4.3 Transition Temperature -- 4.4.4 The Energy Gap -- 4.4.5 Critical Field and Specific Heat -- 4.5 Anomalous Properties of the Cuprates -- 4.5.1 Temperature-Hole Concentration Phase Diagram -- 4.5.2 Normal State Resistivity -- 4.5.3 Presence of Pseudo-Gap in Highly Underdoped Superconductors -- 4.5.4 Comparison with Conventional Metallic Superconductors -- 4.6 Possible Theories of HTS -- 4.6.1 The Resonating Valence Bond (RVB) Theory -- 4.6.2 The Spin Fluctuation Theory -- 4.6.3 Revisiting BCS Theory to Explain HTS Superconductors -- 4.6.4 Positive Feedback Mechanism for High-Tc Superconductivity -- 4.6.5 Pairing in Strongly Correlated Electron Systems -- 4.6.6 Three-Band d-p Model -- 4.7 Theories of Newly Emerged Superconductors -- 4.7.1 Theory of Superconductivity in MgB2 -- 4.7.2 Theory of Iron-Based Superconductors (IBSC) -- 4.7.3 Superconductivity in Sulphur Hydride (H3S) -- References -- 5 Conventional Practical Superconductors -- 5.1 Superconductors Useful for Magnet Application -- 5.2 Thermal and Electromagnetic Instability Problem-The Multifilamentary Superconductors -- 5.2.1 Degradation and Flux Jump -- 5.2.2 The Adiabatic or Intrinsic Stability -- 5.2.3 The Dynamic and Cryostatic Stability -- 5.2.4 Multifilamentary Superconducting Wires -- 5.2.5 Twisting and Transposition of the Multifilamentary Wires -- 5.3 Losses in Practical Superconductors -- 5.3.1 Hysteresis Losses -- 5.3.2 Losses Due to Filament Coupling -- 5.3.3 Proximity Coupling Losses -- 5.3.4 Losses Due to Eddy Currents -- 5.3.5 Losses Due to Self-field Effect -- 5.3.6 Losses Due to Transport Current -- 5.3.7 AC Losses in High Temperature Oxide Superconductors -- 5.4 AC Loss Measurement Methods -- 5.4.1 Electric Method. 5.4.2 Magnetization Method -- 5.4.3 Calorimetric Method -- 5.5 Practical Superconductors-The Ubiquitous Nb-Ti Superconductor -- 5.5.1 Emergence of Nb-Ti as a Superconductor for Magnets -- 5.5.2 The Phase Diagram of Nb-Ti -- 5.5.3 Optimization of Jc in Nb-Ti Wires -- 5.5.4 Developments in the Fabrication Process of MF Cu/Nb-Ti Composite Conductors -- 5.5.5 Use of Diffusion Barrier and Filament Spacing -- 5.5.6 Nb-Ti Cable-in-Conduit Conductors (CICC) -- 5.6 The Discovery of A-15 Nb3Sn Superconductor -- 5.6.1 Emergence of Nb3Sn as High-Field Superconductor -- 5.6.2 The Bronze Process -- 5.6.3 Parameters to Be Optimized -- 5.6.4 Elemental Additions to Nb3Sn -- 5.6.5 The Internal Tin (IT) Process -- 5.6.6 The Jelly Roll Process -- 5.6.7 The Rod Restacking Process (RRP) -- 5.6.8 The Powder-in-Tube (PIT) Process -- 5.6.9 Conductor for High-Luminosity LHC Quadrupole Magnets -- 5.6.10 The In Situ Process -- 5.7 The A-15 Nb3Al MF Superconductor -- 5.7.1 Phase Diagram of Nb-Al System -- 5.7.2 Mass Production of JR Nb3Al Conductors by JAERI for ITER -- 5.7.3 The Rapid Heating, Quench and Transformation (RHQT) Technique -- 5.8 The V3Ga Tapes and Multifilamentary Wires -- 5.8.1 The V-Ga Binary Phase Diagram -- 5.8.2 V3Ga Diffusion Tapes -- 5.8.3 Bronze-Processed V3Ga MF Conductors -- 5.8.4 V3Ga Conductor by PIT Method -- References -- 6 Practical Cuprate Superconductors -- 6.1 Introduction -- 6.2 2G REBCO Tape Wires (Coated Conductors) -- 6.2.1 Enhancement of Jc Through Heavy Doping -- 6.2.2 Development of Flexible Fine Round REBCO Wires with High Mechanical Strength -- 6.2.3 Next Generation High-Current REBCO STAR Wire for Compact Magnets -- 6.2.4 High Engineering Current Density (Je) in REBCO Wires -- 6.2.5 REBCO Deposition on 30 µm Hastelloy Substrate and High Je -- 6.2.6 High-Current CORC Cables -- 6.2.7 REBCO-CORC Cable-In-Conduit Conductors (CORC-CICC). 6.2.8 The Roebel Bar Cable -- 6.2.9 HTS CroCo Cable Development for DEMO Fusion Reactor -- 6.2.10 Supremacy of REBCO-Coated Conductors -- 6.3 The Promising Bi2Sr2CaCu2Ox (Bi-2212) Practical Wires and Cables -- 6.3.1 Development of a 10 kA Bi-2212 Conductor -- 6.3.2 Bubble Formation in PIT Bi-2212 Wire Filaments and Current Blockage -- 6.3.3 High Jc in Round Bi-2212 Wires Through Over-Pressure Heat Treatment -- 6.3.4 Isotropic Round OP Bi-2212 Wires Generate a Field of 33.6 T -- 6.3.5 AC Loss in Bi-2212 Cable-In-Conduit Conductors -- 6.3.6 PIT-OPHT Bi-2212 Rutherford Cable -- 6.4 The Bi-2223 Conductors -- 6.4.1 The Controlled Over-Pressure (CT-OP) Processed Bi-2223 Superconductors -- 6.4.2 Suitability of DI-Bi-2223 for High-Field Magnets -- 6.4.3 Low AC Loss Bi-2223 Conductors -- 6.4.4 A Comparison Between B-2212 and Bi-2223 Wires -- References -- 7 Practical Magnesium Diboride (MgB2) Superconductor -- 7.1 Introduction -- 7.2 Preparation of Bulk MgB2, Single Crystal and Thin Film -- 7.3 MgB2 Wires, Tapes and Cables -- 7.3.1 Different Variants of PIT Technique-The In Situ PIT Technique -- 7.3.2 The Ex Situ PIT Technique -- 7.3.3 The Internal Magnesium Diffusion (IMD) Technique -- 7.3.4 Enhancement of Jc Through Optimization of Process Parameters and Doping -- 7.3.5 A Hybrid IMD/PIT Technique -- 7.4 Low AC Loss MgB2 Wires/Cables -- 7.5 Rutherford MgB2 Cables -- 7.5.1 Rutherford Cable with Al-Al2O3 Metal-Matrix Composite (MMC) Sheath -- 7.6 Thin Film Route for MgB2 Conductors -- 7.7 An Upswing in the Use of MgB2 for Applications -- References -- 8 Iron-Based Practical Superconductors -- 8.1 General Features of Iron-Based Superconductors -- 8.2 Structure and Phase Diagrams of IBSC Compounds -- 8.3 Electronic and Structural Phase Diagram of LnOFeAs, 1111 Compounds -- 8.4 Superconductivity in LaFeCoAsO Induced by Co Doping. 8.4.1 Superconductivity in Co-Doped Sm(FeCo)AsO Compounds. |
| Record Nr. | UNISA-996466844403316 |
Sharma R. G.
|
||
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||