top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Cyber-Security for Smart Grid Control : Vulnerability Assessment, Attack Detection, and Mitigation
Cyber-Security for Smart Grid Control : Vulnerability Assessment, Attack Detection, and Mitigation
Autore Sreejith Amulya
Edizione [1st ed.]
Pubbl/distr/stampa Singapore : , : Springer, , 2024
Descrizione fisica 1 online resource (153 pages)
Altri autori (Persone) Shanti SwarupK
Collana Transactions on Computer Systems and Networks Series
ISBN 9789819713028
9789819713011
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Authors -- Nomenclature -- Constants -- Indices -- Matrices -- Variables -- Part I Cyber-Physical Smart Grid Systems -- 1 Smart Grid Cyber-Physical System: An Overview -- 1.1 Introduction -- 1.2 Smart Grid Cyber-Physical System -- 1.2.1 Smart Power Grids -- 1.2.2 Cyber-Physical Systems -- 1.3 Issues in Smart Grid Cyber-Physical Systems -- 1.4 Attacks on Smart Grid Systems -- 1.5 Defense in Depth Security Approach -- 1.6 Cyber-Security in Smart Grid Control -- References -- 2 Smart Grid Control -- 2.1 Introduction -- 2.2 Smart Grid Control and Cyber-Security -- 2.2.1 Smart Grid Control -- 2.2.2 Cyber-Security in Smart Grid Control -- 2.3 Frequency Control -- 2.4 Load Frequency Control Modeling -- 2.5 State-Space Representations -- 2.5.1 Nonlinearities Modeling in MA-LFC -- 2.6 Load Frequency Control Cyber-Physical System -- 2.7 Summary -- References -- Part II Attacks in Smart Grid Control Vulnerability Assessment -- 3 Attack Modeling for Smart Grid Control -- 3.1 Introduction -- 3.2 Smart Grid Attack Modeling Overview -- 3.3 Multi-area Load Frequency Control (MA-LFC) -- 3.3.1 MA-LFC Modeling -- 3.4 Attack Modeling for MA-LFC -- 3.5 Stealth/Undetectable Attacks -- 3.6 Multiple-Attack Model -- 3.6.1 Scaling Attack -- 3.6.2 Ramp Attack -- 3.6.3 False Data Injection Attack (FDIA) -- 3.6.4 Zero-Day Attacks -- 3.7 Attack Impact Analysis for IEEE 39-Bus New England Test System LFC -- 3.7.1 Example 3.1: Single Attack Dynamics -- 3.7.2 Example 3.2: Multiple-Attack Dynamics -- 3.8 Future Scope -- 3.8.1 Research Gap -- 3.8.2 Research Directions -- 3.9 Summary -- References -- 4 Vulnerability Assessment for Multi-area Load Frequency Control -- 4.1 Introduction -- 4.2 Data Penetration Testing -- 4.3 Cascading Outage Model -- 4.4 Vulnerability Assessment -- 4.4.1 Identification of Threats and Vulnerabilities.
4.4.2 Quantifying Risk -- 4.4.3 Prioritizing the Risk -- 4.5 Detailed Risk Quantification Methodology -- 4.5.1 Stage 1: Initiating Event Identification -- 4.5.2 Stage 2: Determination of Required Change in Generation -- 4.5.3 Stage 3: Optimal Attack Vector and Risk Calculation -- 4.6 Case Study: Vulnerability Assessment for 9-Bus and 39-Bus New England Systems -- 4.6.1 Example 4.1: VA on 9-Bus System -- 4.6.2 Example 4.2: Vulnerability Assessment for 39-Bus New England System -- 4.7 Summary -- References -- 5 MITRE ATT& -- CK for Smart Grid Cyber-Security -- 5.1 Introduction -- 5.2 Understanding MITRE ATT& -- CK -- 5.2.1 Evolution of MITRE ATT& -- CK -- 5.2.2 Relevance of MITRE ATT& -- CK in Smart Grid Cyber-Security -- 5.3 Mapping Threats to Smart Grids -- 5.3.1 Mapping Attacks to the MITRE Framework -- 5.4 Using MITRE ATT& -- CK for Smart Grid Defense -- 5.4.1 Tactic/Technique-Based Mitigation -- 5.4.2 Customized Mitigation Strategies -- 5.4.3 Incident Response Playbooks -- 5.4.4 Continuous Monitoring and Testing -- 5.4.5 Vendor and Technology Collaboration -- 5.4.6 Documentation and Compliance -- 5.5 MITRE ATT& -- CK for Vulnerability Assessment and Penetration Testing (VAPT) -- 5.5.1 Mapping of Exploits to MITRE ATT& -- CK -- 5.6 Analyze the Likelihood, Impact, and Risk Scores -- 5.6.1 Substation Attack Trees -- 5.6.2 Impact Scores -- 5.6.3 Likelihood Scores -- 5.6.4 Risk Scores -- 5.7 Case Study: MITRE ATT& -- CK for Substation VA -- 5.7.1 Attack Penetrates to Final Node -- 5.7.2 Attack Stops at Capture Packets -- 5.8 Summary -- References -- Part III Attack Detection and Mitigation -- 6 Signal Processing-Based Attack Detection -- 6.1 Introduction -- 6.2 Multi-level Attack Detection -- 6.3 Singular Spectral Analysis (SSA)-Based Attack Detection -- 6.4 Process Level Single Variate Attack Detection.
6.4.1 Signal Subspace Determination -- 6.4.2 Signal Subspace Projection -- 6.4.3 Detection Phase -- 6.4.4 Selection of Parameters -- 6.5 Multivariate SSA for Control Center Level Detection -- 6.5.1 Extension in Training Phase -- 6.5.2 Extension in Detection Phase -- 6.6 Performance Analysis of Detection Algorithm -- 6.6.1 Performance Enhancement of Detection Algorithm -- 6.7 Multi-level Attack Detection Results -- 6.7.1 Example 6.1: Multi-level Attack Detection on 39-Bus System -- 6.7.2 RTU/IED Level Detection Results -- 6.7.3 Control Center Level Detection Results -- 6.8 Hypothesis Testing-Based Attack Detection -- 6.9 SSA Hoeffding Test-Based Hypothesis Testing -- 6.10 Adaptive Threshold Selection -- 6.11 Adaptive Attack Detection Results -- 6.11.1 Example 6.2: Adaptive Attack Detection -- 6.11.2 Performance Under Load Variations -- 6.11.3 Comparison with Existing Detection Strategies -- 6.11.4 Scalability Evaluation -- 6.12 Summary -- References -- 7 Machine Learning-Based Attack Detection -- 7.1 Introduction -- 7.2 Machine Learning in Smart Grid Attack Detection -- 7.3 Support Vector Data Description Based Online Attack Detection -- 7.3.1 Normal Data Description in SVDD -- 7.3.2 Distance Tracking and Detection -- 7.3.3 Optimization-Based Parameter Selection -- 7.4 Simulation Results and Discussions -- 7.4.1 Example 7.1: SVDD Detection for Attacks -- 7.4.2 Data Preparation -- 7.4.3 Particle Swarm Optimization (PSO) Based Parameter Selection -- 7.4.4 Detection Results -- 7.4.5 Comparison with Other Classifiers -- 7.4.6 Summary of Results -- 7.5 Summary -- References -- 8 Attack Mitigation and Recovery in Smart Grid Control -- 8.1 Introduction -- 8.2 Attack Mitigation in Smart Grids -- 8.2.1 Estimation-Based Mitigation -- 8.2.2 Attack Elimination Using Robust Control -- 8.2.3 Bypass LFC -- 8.3 Adaptive Control-Based Attack Mitigation.
8.4 Attack Mitigation for 39-Bus 3 Area System -- 8.4.1 Example 8.1: Single Step Load Change Results -- 8.4.2 Example 8.2: New England ISO Load Data Results -- 8.5 IoT-Based Hardware Model -- 8.6 Research Scope -- 8.6.1 Research Gap -- 8.6.2 Research Directions -- 8.7 Summary -- References -- Appendix A Test Systems Data -- A.1 IEEE 9-Bus System -- A.2 39-Bus New England Test System -- A.3 IEEE 300-Bus System -- Appendix B Detailed Equations for Cascading Outage Model -- Appendix C Information Theory and Hypothesis Testing -- C.1 Hoeffding Test -- C.2 Neyman-Pearson Theorem -- C.2.1 Neyman-Pearson Lemma -- Appendix D Proofs of Theorems -- D.1 Theorem 3.1 -- D.2 Theorem 6.1 -- D.3 Theorem 6.2.
Record Nr. UNINA-9910865240003321
Sreejith Amulya  
Singapore : , : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Design and Development of Model Predictive Primary Control of Micro Grids : Simulation Examples in MATLAB / / by Puvvula Vidyasagar, K. Shanti Swarup
Design and Development of Model Predictive Primary Control of Micro Grids : Simulation Examples in MATLAB / / by Puvvula Vidyasagar, K. Shanti Swarup
Autore Vidyasagar Puvvula
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (170 pages) : illustrations
Disciplina 621.31
Collana Springer Tracts in Electrical and Electronics Engineering
Soggetto topico Electric power production
Control engineering
Electrical Power Engineering
Mechanical Power Engineering
Control and Systems Theory
ISBN 981-19-5852-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Micro-grid Introduction and Overview -- Chapter 2. An Overview of Micro-grid Control -- Chapter 3. Mathematical Modelling of a Micro-grid -- Chapter 4. Introduction to Model Predictive Control -- Chapter 5. LTI-MPC for the Micro-grid Control -- Chapter 6. LTV-MPC with Extended “TAIL” -- Chapter 7. Special functions in the MPC formulation -- Chapter 8. Auxiliary Requirements for Real-time Implementation -- Chapter 9. Conclusion and Future Scope. .
Record Nr. UNINA-9910637716103321
Vidyasagar Puvvula  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Market Operation for Reactive Power Ancillary Service : Design and Analysis with GAMS Code / / by Devika Jay, K. Shanti Swarup
Market Operation for Reactive Power Ancillary Service : Design and Analysis with GAMS Code / / by Devika Jay, K. Shanti Swarup
Autore Jay Devika
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (XI, 130 p. 46 illus., 23 illus. in color.)
Disciplina 621.31
Collana Springer Tracts in Electrical and Electronics Engineering
Soggetto topico Electric power production
Power electronics
Artificial intelligence
Game theory
Electrical Power Engineering
Power Electronics
Artificial Intelligence
Game Theory
ISBN 981-9969-52-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Electricity Markets -- Energy and Ancillary Service Markets -- Reactive Power Ancillary Service Markets -- Network Partitioning Techniques -- Market Mechanisms for Reactive Power Ancillary Service.
Record Nr. UNINA-9910799238803321
Jay Devika  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui