Fourth International Conference on Image Processing and Capsule Networks : Icipcn 2023 |
Autore | Shakya Subarna |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore : , : Springer, , 2024 |
Descrizione fisica | 1 online resource (741 pages) |
Altri autori (Persone) |
TavaresJoão Manuel R. S
Fernández-CaballeroAntonio PapakostasGeorge |
Collana | Lecture Notes in Networks and Systems Series |
Soggetto topico |
Image processing
Neural networks (Computer science) |
ISBN |
9789819970933
9819970938 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Editors and Contributors -- Modern Challenges and Limitations in Medical Science Using Capsule Networks: A Comprehensive Review -- 1 Introduction -- 2 What Are the Modern Challenges in Medical Science? -- 3 How Medical Science Problems Can Be Solved Using Capsule Networks? -- 4 How to Analyze a Large Amount of Data in Drug Development Using Capsule Networks? -- 5 Research Questions -- 6 Related Work -- 7 Existing Work Limitations -- 8 Methodology -- 8.1 CapsNet -- 8.2 ConvCaps -- 9 Research Motivation -- 10 Problem Statement -- 11 Discussion -- 12 Existing Research Limitations -- 13 Identified Research Gaps -- 14 Limitations of the Capsule Networks for Medical Science Research -- 15 Current Applications -- 15.1 Micro-Robot Adaptation -- 15.2 Network Biology -- 16 Open Challenges and Future Redirections -- 16.1 Transfer Learning -- 17 Conclusion and Future Work -- References -- Studies on Movie Soundtracks Over the Last Five Years -- 1 Introduction -- 2 Methodology -- 3 Results -- 3.1 Soundtrack Influence on the Audiovisual Narrative of Movies -- 3.2 The Creative Process of a Movie Soundtrack -- 3.3 Music and Political Communication -- 3.4 Soundtrack as a Study Instrument -- 4 Discussion and Conclusions -- References -- Blind Source Separation of EEG Signals Using Wavelet and EMD Decomposition -- 1 Introduction -- 2 Material and Methods -- 2.1 Datasets -- 2.2 Empirical Mode Decomposition -- 2.3 Wavelet Transform -- 2.4 Blind Source Separation -- 2.5 Proposed Method -- 3 Results -- 4 Conclusion -- References -- Image Extraction Approaches for Density Count Measurement in Obstruction Renography Using Radiotracer 99mTc-DTPA -- 1 Introduction -- 1.1 Characteristics of DTPA in Renal Imaging -- 2 Materials and Methods -- 3 Results -- 3.1 Mean and Standard Deviation of Transforms -- 3.2 Radioactive Counts Measurement.
3.3 Statistical Correlation Findings -- 4 Discussion -- 4.1 Statistical Analysis for Clinical Validation -- 5 Conclusion -- References -- Deep Short-Term Long Memory Technique for Respiratory Lung Disease Prediction -- 1 Introduction -- 2 Related Work -- 2.1 Problem of Statement -- 3 Proposed Methodology -- 3.1 Dataset Collection -- 3.2 Image Pre-processing -- 3.3 Local Binary Gabor Filter -- 3.4 Deep Short-Term Long Memory (DSTLM) -- 4 Analyses and Discussions of Experimental Results -- 4.1 Evaluation Matrix -- 5 Conclusion -- References -- Utilizing Satellite Imagery for Flood Monitoring in Urban Regions -- 1 Introduction -- 2 Related Work -- 3 Major Techniques Used -- 3.1 Ordered Weighted Averaging -- 3.2 Spectral Indices -- 3.3 Region Growing -- 3.4 Double Scattering -- 3.5 Bootstrap Method -- 3.6 Fuzzy Logic-Based Post Classification -- 3.7 Probabilistic Flood Mapping -- 3.8 Normalized Difference Vegetation Index -- 3.9 Modified Normalized Difference Water Index -- 3.10 Normalized Difference Water Index (NDWI) -- 3.11 CNN (Convolutional Neural Network) -- 4 Literature Survey -- 5 Observation on Literature Survey -- 6 Proposed Architecture -- 7 Methodology -- 7.1 Training -- 7.2 Testing -- 8 Conclusion and Future Scope -- References -- Optimizing Permutations in Biclustering Algorithms -- 1 Introduction -- 1.1 Literature Survey -- 1.2 Aim of the Study -- 2 Materials and Methods -- 2.1 Datasets -- 2.2 Device Specifications and Software -- 2.3 Structural Magnetic Resonance Imaging Data -- 2.4 Modified N-BiC Algorithm -- 2.5 Evaluation Measures -- 3 Results and Discussion -- 3.1 Simulated Dataset -- 3.2 PPMI Dataset -- 3.3 Performance of Modified N-BiC on PPMI Dataset -- 4 Research Limitations/Implications -- 5 Originality and Value -- 6 Conclusion and Future Research Work -- References. Extracting Graphs from Plant Leaf Venations Using Image Processing -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 3.1 Image Acquisition -- 3.2 Preprocessing -- 3.3 Ground Truth (GT) Tracing -- 3.4 Vein Extraction and Graph Conversion -- 4 Results -- 4.1 Performance Analysis -- 4.2 Graph Metrics Results -- 5 Conclusion and Recommendation -- References -- Multispectral Fusion of Multisensor Image Data Using PCNN for Performance Evaluation in Sensor Networks -- 1 Introduction -- 2 Related Work -- 3 Research Methodology -- 3.1 Image Preprocessing -- 3.2 Image Enhancement -- 3.3 Image Fusion -- 3.4 Image Quality Enhancement -- 3.5 Image Reverse-Fusion Process -- 4 Results and Discussion -- 5 Conclusion -- References -- U-Net-Based Segmentation of Coronary Arteries in Invasive Coronary Angiography -- 1 Introduction -- 2 Related Work -- 2.1 Medical Imaging Works for Coronary Arteries -- 2.2 Image Segmentation with U-Net -- 3 Materials and Methods -- 3.1 Dataset -- 3.2 Method -- 4 Results and Discussion -- 5 Conclusion -- References -- Change Detection for Multispectral Remote Sensing Images Using Deep Learning -- 1 Introduction -- 1.1 Applications of Remote Sensing -- 2 Proposed Work -- 2.1 Datasets -- 2.2 Architecture -- 2.3 Proposed Work -- 3 Result Analysis -- 4 Conclusion -- References -- Explainable AI for Black Sigatoka Detection -- 1 Introduction -- 1.1 Backgroung and Motivation -- 1.2 Research Contribution -- 2 Research Problem Definition -- 3 Research Approach and Methodology -- 3.1 Data Collection and Preprocessing -- 3.2 Model Implementation -- 4 Major Research Findings -- 4.1 Model Evaluation -- 4.2 XAI Results -- 5 Practical Implications -- 6 Research Limitations -- 7 Originality/Value -- 8 Conclusion and Future Research Work -- 8.1 Conclusion -- 8.2 Future Works -- References. Modified U-Net and CRF for Image Segmentation of Crop Images -- 1 Introduction -- 2 Related Work -- 2.1 U-Net -- 2.2 Residual Block (ResBlock) -- 2.3 Residual Path -- 3 Proposed Architecture -- 3.1 Selection of Algorithm -- 3.2 Conditional Random Field (CRF) -- 4 Results and Discussions -- 4.1 Qualitative Evaluation -- 4.2 Quantitative Evaluation -- 4.3 Retention of Spatial Information -- 5 Conclusion -- References -- Securing Data in the Cloud: The Application of Fuzzy Identity Biometric Encryption for Enhanced Privacy and Authentication -- 1 Introductıon -- 2 Related Work -- 3 System Model -- 4 Basic Fuzzy Selective-ID -- 5 Conclusion -- References -- Quantum Convolutional Neural Network for Agricultural Mechanization and Plant Disease Detection -- 1 Introduction -- 2 Related Work -- 3 Materials and Methods -- 3.1 Dataset -- 3.2 Feature Extraction -- 3.3 Segmentation -- 3.4 Classification -- 4 Results and Discussion -- 4.1 State of the Art -- 5 Conclusion -- References -- Innovative Method for Alzheimer's Disease Detection Using Convolutional Neural Networks -- 1 Introduction -- 2 Related Work -- 3 Materials and Methods -- 3.1 Dataset Description -- 3.2 Dataset Preprocessing -- 3.3 Model Architecture and Design -- 4 Result Analysis and Discussion -- 4.1 Experimental Setup -- 4.2 Result Analysis and Performance Evaluation -- 5 Conclusion -- References -- Segmentation of White Matter Lesions in MRI Images Using Optimization-Based Deep Neural Network -- 1 Introduction -- 2 Related Work -- 2.1 Research Problem -- 3 Methodology -- 3.1 Harris hawk's Optimization (HHO) -- 3.2 Proposed HHO-DCNN for WML Segmentation -- 3.3 Architecture of CNN -- 4 Results and Discussion -- 4.1 Dataset -- 4.2 Quantitative Evaluation -- 5 Conclusion -- References -- A New Multi-level Hazy Image and Video Dataset for Benchmark of Dehazing Methods -- 1 Introduction. 2 Related Work -- 2.1 Traditional Methods -- 2.2 Deep Learning-Based Methods -- 3 Datasets -- 4 IMF Dataset (IMFD) -- 5 Experiment -- 6 Results and Discussion -- 7 Conclusion -- References -- Creative AI Using DeepDream -- 1 Introduction -- 1.1 Convolution Neural Network -- 1.2 What is DeepDream? -- 1.3 Motivation -- 2 Literature Survey -- 3 Methodology -- 3.1 Tools Used -- 3.2 DeepDream Implementation Using Tensorflow -- 3.3 Proposed System -- 4 Result -- 5 Conclusion -- References -- Tuberculosis Bacteria Detection Using Deep Learning Techniques -- 1 Introduction -- 2 Literature Review -- 3 Materials and Methods -- 3.1 Dataset Description -- 3.2 Dataset Pre-processing -- 3.3 System Architecture and Implementation -- 4 Results and Discussion -- 4.1 Experimental Results -- 4.2 Performance Evaluation -- 5 Conclusion -- References -- An Enhanced Real-Time System for Wrong-Way and Over Speed Violation Detection Using Deep Learning -- 1 Introduction -- 2 Literature Survey -- 3 Project Methodology -- 3.1 YOLOv3 Algorithm -- 3.2 Working of YOLOv3 -- 3.3 YOLOv3 Network Architecture -- 3.4 Kalman Filter -- 3.5 Wrong-Way Traffic Violation Detection Algorithm -- 3.6 Over Speed Violation Detection Algorithm -- 4 Experimental Results -- 4.1 Vehicle Detection and Tracking -- 4.2 Wrong-Way Violation Detection -- 4.3 Over Speed Violation Detection -- 5 Conclusion -- References -- U-Net-Based Denoising Autoencoder Network for De-Speckling in Fetal Ultrasound Images -- 1 Introduction -- 2 Existing Methods -- 3 Proposed Method -- 3.1 U-Net-Based Denoising Network -- 3.2 U-shaped Dilated Convolution Denoising Autoencoder Network -- 3.3 U-Net-Based Denoising Autoencoder Network -- 4 Result and Discussion -- 4.1 Dataset -- 4.2 Adding Speckle Noise -- 4.3 Effect of Dropout -- 4.4 Effects of Accuracy and Loss -- 4.5 Effects on Different Noise Levels -- 5 Conclusion. References. |
Record Nr. | UNINA-9910765485303321 |
Shakya Subarna | ||
Singapore : , : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mobile Computing and Sustainable Informatics : Proceedings of ICMCSI 2023 / / edited by Subarna Shakya, George Papakostas, Khaled A. Kamel |
Autore | Shakya Subarna |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (792 pages) |
Disciplina | 006.3 |
Altri autori (Persone) |
PapakostasGeorge
KamelKhaled A |
Collana | Lecture Notes on Data Engineering and Communications Technologies |
Soggetto topico |
Computational intelligence
Mobile computing Computer networks - Security measures Artificial intelligence Computational Intelligence Mobile Computing Mobile and Network Security Artificial Intelligence |
Soggetto non controllato |
Smartphones
Computer Networks Artificial Intelligence Engineering Computers Technology & Engineering |
ISBN | 981-9908-35-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Measuring the technical efficiency of Thai rubber export using the spatial stochastic frontier model under the BCG concept -- Analysis of Digital data Consumption of video streaming platforms during COVID-19 -- A Prototype of Wireless Power Transmission System Based on Arduino -- Short review on blockchain technology for smart city security -- Efficient Analysis of Sequences of Security Problems in Access Control Systems -- Artificial Intelligence in Agriculture: Machine Learning based Early Detection of Insects and Diseases with Environment and Substance Monitoring us-ing IoT -- Design Concepts for Mobile Computing Direction Finding Systems -- A Hybrid Machine Learning Model for Urban Mid- and Long-term Electricity Load Forecasting -- Optimizing Long Short-Term Memory by Improved Teacher Learning Based Optimization for Ethereum Price Forecasting -- A Sophisticated review on Open Verifiable Health Care system in Cloud -- Fuzzy Metadata Augmentation for Multimodal Data Classification -- Development of information accuracy control system -- MODELLING AN EFFICIENT APPROACH TO ANALYZE CLONE PHISHING AND PREDICT CYBER-CRIMES -- The Application of Mobile Phones to Enable Traffic Flow Optimisation. |
Record Nr. | UNINA-9910728384503321 |
Shakya Subarna | ||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mobile Computing and Sustainable Informatics : Proceedings of ICMCSI 2021 |
Autore | Shakya Subarna |
Pubbl/distr/stampa | Singapore : , : Springer Singapore Pte. Limited, , 2021 |
Descrizione fisica | 1 online resource (864 pages) |
Altri autori (Persone) |
BestakRobert
PalanisamyRam KamelKhaled A |
Collana | Lecture Notes on Data Engineering and Communications Technologies Ser. |
Soggetto genere / forma | Electronic books. |
ISBN | 981-16-1866-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgements -- Contents -- About the Editors -- Mitigating the Latency Induced Delay in IP Telephony Through an Enhanced De-Jitter Buffer -- 1 Introduction -- 1.1 Problem Formulation -- 2 Relevant Works -- 3 VOIP Technique and Network Structure -- 3.1 Media Gateways and Call Managers -- 3.2 Topologies -- 3.3 Session Initiation Protocol (SIP) -- 3.4 SIP Elements -- 4 Limitations -- 5 The Proposed Solution -- 5.1 Modification in De-Jitter Buffer -- 6 Results and Analysis -- 7 Conclusion -- References -- A Cyber-Safety IoT-Enabled Wearable Microstrip Antenna for X-Band Applications -- 1 Introduction -- 2 Existing Approach -- 3 Antenna Design -- 3.1 Antenna Configuration -- 3.2 Antenna Performance -- 3.3 Simulated Results -- 3.4 Measured Results -- 4 Conclusion and Future Work -- References -- Keyword Recognition from EEG Signals on Smart Devices a Novel Approach -- 1 Introduction -- 2 Materials and Methods -- 2.1 Overview -- 2.2 Data Acquisition -- 2.3 Data Preprocessing -- 3 Feature Extraction -- 3.1 DWT Feature Extraction -- 3.2 FFT Feature Extraction -- 3.3 Feature Fusion -- 3.4 Dimensionality Reduction -- 3.5 Command Map Table and Task Observer Thread -- 3.6 Tools and Software -- 4 Classifiers Used -- 4.1 SVM Classifier -- 4.2 KNN Classification -- 4.3 CNN Classifier -- 4.4 Random Forest -- 4.5 Performance Measure -- 5 Results and Discussion -- 6 Conclusion -- References -- Security Analysis for Sybil Attack in Sensor Network Using Compare and Match-Position Verification Method -- 1 Introduction -- 2 Sybil Attach and Security -- 2.1 WSN on Security Attacks -- 2.2 Sybil the Attack -- 3 Compare with Match-Position and Verification of Method -- 4 Message Authentication and Passing (MAP) -- 5 Result and Discussion -- 6 Conclusion -- References -- Certain Strategic Study on Machine Learning-Based Graph Anomaly Detection.
1 Introduction -- 2 Generalized Machine Learning Approaches Towards Outlier Detection -- 2.1 Key Challenges Identified in ML Techniques -- 3 Graph-Based Anomaly Detection Methods -- 3.1 Moving Towards Graph Representation -- 3.2 Existing Graph Basis Anomaly Detection Methods (GBAD) -- 3.3 Baseline Link Analysis Ranking Algorithms -- 3.4 Structure-Based Graph Anomaly Score Through Labelling/Ranking Strategy -- 3.5 Community-Based Graph Anomaly Score Through Labelling/Ranking Strategy -- 3.6 Graph Compression Strategies -- 4 Open Challenges in GBAD -- 5 Concluding Remarks -- References -- Machine Learning Perspective in VLSI Computer-Aided Design at Different Abstraction Levels -- 1 Introduction to Machine Learning and VLSI CAD -- 2 The Basic Paradigm of Machine Learning -- 3 Areas of Machine Learning -- 4 Machine Learning Algorithms -- 5 Drawbacks of Machine Learning -- 6 Application of Machine Learning in VLSI CAD Abtraction Levels -- 6.1 Machine Learning in Automatic Generation of Assertion in RTL Design -- 6.2 Machine Learning in Chip Testing -- 6.3 Machine Learning for Physical Design Routing -- 6.4 Machine Learning in Physical Design Floor Planning -- 6.5 Machine Learning in Static Timimg Analysis (STA) -- 6.6 Machine Learning in Gate-Level Netlist -- 6.7 Machine Learning in EDA and IC Design -- 7 Conclusion and Future Scope -- References -- A Practical Approach to Measure Data Centre Efficiency Usage Effectiveness -- 1 Introduction -- 2 Energy Versus Power -- 2.1 IT Load -- 2.2 Effect of Outdoor Condition -- 2.3 User Configuration -- 2.4 Product Review Analysis -- 3 Related Work -- 4 Proposed Work -- 5 Result Analysis -- 6 Conclusion -- References -- Advancing e-Government Using Internet of Things -- 1 Introduction -- 2 Social Networks and Machine Learning -- 3 Health Care -- 4 Agriculture -- 4.1 Six-Layer IoT-Based Model [4-6] (Shown in Fig. 3). 4.2 Role of Unmanned Aerial Vehicles (UAVs) -- 5 Voting -- 5.1 IoT-Based Voting Framework -- 5.2 Fingerprint Matching Algorithm -- 5.3 Security -- 6 "Smart" Government? -- 7 Future Prospects -- References -- A New Network Forensic Investigation Process Model -- 1 Introduction -- 1.1 Forensic Science -- 1.2 Network Forensics -- 1.3 Need of Network Forensics -- 2 Literature Survey -- 3 Proposed Network Forensic Investigation Process Model -- 3.1 Network Forensic Readiness Module -- 3.2 Security Incident Alert Module -- 3.3 Data Acquisition Module -- 3.4 Forensic Investigation Module -- 3.5 Presentation Module -- 4 Conclusion -- References -- MDTA: A New Approach of Supervised Machine Learning for Android Malware Detection and Threat Attribution Using Behavioral Reports -- 1 Introduction -- 2 Literature Survey -- 3 System Methodology -- 4 System Design -- 5 System Algorithm -- 5.1 Build Model Algorithm -- 5.2 Feature Extraction Algorithm -- 5.3 Prediction Algorithm -- 6 System Implementation -- 6.1 Data Flow Diagram -- 6.2 Sequence Diagram -- 7 Result Analysis -- 7.1 Accuracy of Malware Detection -- 7.2 Accuracy of Threat Attribution -- 8 Experimentation -- 9 Discussion -- 10 Conclusion -- References -- Investigating the Role of User Experience and Design in Recommender Systems: A Pragmatic Review -- 1 Introduction -- 2 Related Work -- 3 Overview of Usability Engineering -- 4 Experimental Set-Up -- 5 Findings -- 6 Proposed Model -- 7 Conclusion -- 8 Future Scope -- References -- A Review on Intrusion Detection Approaches in Resource-Constrained IoT Environment -- 1 Introduction -- 2 Review of Intrusion Detection Frameworks for IoT -- 3 Open Issues -- 4 Discussion on Open Issues and Future Research Direction -- 5 Conclusion -- References -- Future 5G Mobile Network Performance in Webservices with NDN Technology -- 1 Introduction -- 2 Literature Review. 3 Network Testing Considered in Signal Error Detection and Correction Format -- 4 System Analysis -- 5 Enhanced System Design -- 5.1 Steps for Performance Improvements and Existing Analysis -- 5.2 Steps for Overcoming the Issues -- 5.3 Algorithm Equations and Operational Methods -- 6 Conclusion -- References -- Survey for Electroencephalography EEG Signal Classification Approaches -- 1 Introduction -- 1.1 Motivation -- 1.2 Survey Strategy and Evaluation -- 1.3 Paper Organization -- 2 Support Vector Machine for EEG Classification -- 3 Artificial Neural Network (ANN) for EEG Classification -- 4 Convolution Neural Network (CNN) for EEG Classification -- 5 K-Nearest Neighbor (K-NN) for EEG Classification -- 6 Linear Discriminant Analysis (LDA) for EEG Classification -- 7 Multi-classifier Approaches for EEG Classification -- 8 Other Models for EEG Classification -- 9 Analysis and Evaluation -- 10 Conclusion -- References -- Analysis of Road Accidents Using Data Mining Paradigm -- 1 Introduction -- 2 Data and Methods -- 2.1 Data Description -- 2.2 Apriori Algorithm -- 3 Results and Discussion -- 3.1 Road Type -- 3.2 Intoxication -- 4 Conclusions -- References -- Hybrid Approach to Cross-Platform Mobile Interface Development for IAAS -- 1 Introduction -- 2 State of the Art on IAAS -- 2.1 General Mechanism of IAAS -- 2.2 Implementation of IAAS -- 3 State of the Art on Mobile Development Approaches -- 3.1 Native Approach -- 3.2 Web Approach -- 3.3 Hybrid Approach -- 4 Comparative Study and Mobile Solution Proposition for IAAS -- 4.1 Description of the Interface to Be Developed -- 4.2 Proposed Development Approach -- 5 Implementation and Evaluation -- 5.1 Functional Needs Model and Analysis -- 5.2 Realization of the Proposition -- 5.3 Display Tests and Evaluation of the Solution -- 6 Conclusion -- References. Self-organizing Data Processing for Time Series Using SPARK -- 1 Introduction -- 2 Problem Definition -- 3 Related Work -- 4 Proposed Work -- 5 Results and Evaluation -- 5.1 Data and Preprocessing -- 5.2 Experimental Setup -- 5.3 Results -- 6 Conclusion -- References -- An Experimental Investigation of PCA-Based Intrusion Detection Approach Utilizing Machine Learning Algorithms -- 1 Introduction -- 1.1 Kinds of IDS -- 2 Related Work -- 3 Methodology -- 3.1 Machine Learning Techniques -- 3.2 Principal Component Analysis (PCA) -- 4 Experimental Evaluation -- 4.1 Result and Discussion -- 5 Conclusion -- References -- OpenFlow-Based Dynamic Traffic Distribution in Software-Defined Networks -- 1 Introduction -- 2 Background and Related Studies -- 2.1 Software-Defined Network (SDN) and Openflow -- 2.2 Related Works -- 3 System Design and Implementation -- 3.1 System Architecture -- 3.2 Load Balancing Algorithm -- 4 Performance Evaluation and Results -- 4.1 Performance Parameters -- 4.2 Experimental Environment -- 4.3 Experimental Design -- 4.4 Experimental Results -- 5 Conclusions and Future Works -- References -- A Comparative Study of Classification Algorithms Over Images Using Machine Learning and TensorFlow -- 1 Introduction -- 1.1 Convolutional Neural Networks -- 2 Methodology -- 3 Experimental Results -- 3.1 Model Development -- 3.2 Packages Required -- 4 Conclusion -- References -- Intelligent Routing to Enhance Energy Consumption in Wireless Sensor Network: A Survey -- 1 Introduction -- 2 Wireless Sensor Networks Structure -- 3 The Approaches to Energy Consumption Managment -- 3.1 Intelligent Routing Protocols -- 3.2 Duty Cycle -- 3.3 Data Manipulation -- 3.4 Based on Mobility -- 4 Disscusions -- 5 Conclusions -- References -- Deep Residual Learning for Facial Emotion Recognition -- 1 Introduction -- 1.1 Background -- 2 Related Works. 3 Proposed Methodology. |
Altri titoli varianti | Mobile Computing and Sustainable Informatics |
Record Nr. | UNINA-9910497103403321 |
Shakya Subarna | ||
Singapore : , : Springer Singapore Pte. Limited, , 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Sentimental Analysis and Deep Learning : Proceedings of ICSADL 2021 |
Autore | Shakya Subarna |
Pubbl/distr/stampa | Singapore : , : Springer Singapore Pte. Limited, , 2021 |
Descrizione fisica | 1 online resource (1023 pages) |
Altri autori (Persone) |
BalasValentina Emilia
KamolphiwongSinchai DuKe-Lin |
Collana | Advances in Intelligent Systems and Computing Ser. |
Soggetto genere / forma | Electronic books. |
ISBN | 981-16-5157-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- 508480_1_En_BookFrontmatter_OnlinePDF -- Preface -- Acknowledgments -- Contents -- Editors and Contributors -- Analysis of Healthcare Industry Using Machine Learning Approach: A Case Study in Bengaluru Region -- 1 Introduction -- 2 Literature Survey -- 3 Challenges Faced During Data Acquisition -- 4 Methodology -- 4.1 Web Scraping -- 4.2 Statistical Analysis -- 4.3 Natural Language Processing -- 4.4 Sentimental Analysis -- 5 Results and Discussion -- 6 Conclusion -- References -- Dynamic Document Localization for Efficient Mining -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Probabilistic Model for Query-Workload -- 3.2 Probabilistic Model for Content-Workload -- 3.3 Bernoulli Model for Rank Calculation -- 4 Fuzzy Threshold Algorithms -- 5 Experimental Analysis -- 5.1 Effect of Attribute Suggestion to Determine Precision and Recall -- 5.2 Effect of Biasing Coefficient for Determining Attribute Matches -- 5.3 Effect of Database Size for Determining Precision -- 6 Conclusion -- References -- SentiSeries: A Trilogy of Customer Reviews, Sentiment Analysis and Time Series -- 1 Introduction -- 2 Literature Review -- 3 Theory of Dynamic Sentiment Tracking -- 3.1 Natural Language Processing-Sentiment Analysis -- 3.2 Time Series Characteristics -- 4 Dataset -- 5 Results and Discussions -- 6 Conclusions and Future Work -- References -- Video Summarization Using Fully Convolutional Residual Dense Network -- 1 Introduction -- 2 Related Work -- 3 Our Approach -- 3.1 Problem Description -- 3.2 Fully Convolutional Residual Dense Network -- 4 Results -- 4.1 Datasets -- 4.2 Result -- 5 Conclusion -- References -- An Efficient Deep Learning Approach for Detecting Pneumonia Using the Convolutional Neural Network -- 1 Introduction -- 2 Literature Review -- 3 Material and Methods -- 3.1 Dataset -- 3.2 Preprocessing and Data Augmentation.
3.3 Proposed Model -- 4 Result Analysis -- 5 Discussion -- 6 Conclusion -- References -- QMCDS: Quantum Memory for Cloud Data Storage -- 1 Introduction -- 2 Literature Survey -- 2.1 Related Work -- 2.2 Contributions -- 3 Preliminaries -- 3.1 Qubit -- 3.2 Representation of Quantum Gates -- 3.3 Bloch Sphere -- 4 Proposed Solution -- 5 Experiments and Observation -- 6 Conclusion and Future Scope -- References -- A Study Towards Bangla Fake News Detection Using Machine Learning and Deep Learning -- 1 Introduction -- 2 Related Works -- 3 Proposed Research Methodology (PRM) -- 3.1 Experimental Setup -- 3.2 Data Preparation Pipeline (DPP) -- 3.3 Features Extraction Methods (FEM) -- 3.4 Algorithm Selection Procedure (ASP) -- 4 Result and Analysis -- 4.1 Performance Analysis (PA) -- 4.2 Comparative Analysis (CA) -- 5 Conclusions and Future Work -- References -- A Deep Learning Approach to Analyze the Propagation of Pandemic in America -- 1 Introduction -- 1.1 The Goal of the Paper and Its Contributions -- 1.2 Organization -- 2 The Architecture of the Framework -- 3 Proposed SIR Model -- 4 Proposed Algorithm -- 5 Performance Evaluation -- 5.1 Results -- 6 Discussion -- 7 Conclusion and Future Research -- References -- Graph Convolution-Based Joint Learning of Rumor with Content, User Credibility, Propagation Context, and Cognitive as Well as Emotion Signals -- 1 Introduction -- 2 Existing Work -- 2.1 Rumor Detection and Veracity Classification -- 2.2 Emotion Research and Application of Emotion in Fake News and Rumor Research -- 2.3 Cognitive Signals in Disinformation Research -- 3 Dataset -- 4 Analysis of Cognitive and Emotion Patterns in Rumor and Non-rumor -- 5 Methodology -- 6 Results and Analysis -- 7 Conclusion and Future Work -- References -- Deep Learning-Based Real-Time Object Classification and Recognition Using Supervised Learning Approach. 1 Introduction -- 2 Literature Survey -- 3 Proposed System -- 4 Results and Analysis -- 4.1 Performance Analysis [15-19] -- 5 Conclusion and Future Work -- References -- Single-Channel Speech Enhancement in Modulation Domain Using Particle Swarm Optimization -- 1 Introduction -- 2 Spectral Subtraction -- 2.1 Modulation Domain Spectral Subtraction -- 3 Standard Particle Swarm Optimization -- 4 Proposed Noise Estimation Using PSO -- 5 Results -- 6 Conclusion -- References -- Pneumonia and Diabetic Retinopathy Detection Using Deep Learning Algorithm -- 1 Introduction -- 2 Related Work -- 3 Research Gap -- 4 Problem Definition -- 5 Methodology -- 5.1 Algorithm Used- Convolutional Neural Networks -- 5.2 Data Pre-processing -- 5.3 Model Information -- 5.4 Datasets Used -- 6 Results -- 6.1 Screenshots of Results -- 7 Conclusion -- 8 Future Scope -- References -- Design of IoT-Based Improved Multimodal Ant Colony Optimızation (MM-ACO) Algorithm for Real-Time Applications -- 1 Introduction -- 2 Existing System -- 3 Proposed Algorithm -- 4 Conclusion -- References -- An Interview Transcriber Using Natural Language Processing -- 1 Introduction -- 2 Literature Review -- 3 Proposed System Methodology -- 4 Information Extraction -- 4.1 Approaches to Extract Information -- 5 Textual Similarity -- 5.1 Approaches for Text Pre-processing -- 6 Observed Results -- 6.1 Extracting Information Using Keywords -- 6.2 Extracting Information Based on Similar Pool of Words -- 7 Work Embeddings for Future Deeper Approaches Like Word2Vec -- 7.1 Word2Vec -- 8 Conclusion and Future Scope -- References -- Plagiarism Detection for Source Codes and Texts -- 1 Introduction -- 2 Objectives -- 3 Literature Review -- 4 Proposed Work -- 5 Experimental Analysis -- 6 Result and Discussion -- 7 Conclusion -- References. Investigation of Kinetic Energy Harvesting from Human Body Motion Activities Using Free/Impact Electromagnetic Generator -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Storage of Harvested Energy -- 3.2 The Designed Structure of Biomechanical Hip Energy Harvester -- 4 Results and Discussion -- 4.1 Hip Joint Gait Cycle -- 4.2 Positioning the Angle of Harvester -- 4.3 Hip Joint Gait Harvesting at Walking Speed 80 M/Min -- 5 Conclusion -- References -- Automated Determination of Critical Temperature -- 1 Introduction -- 1.1 Critical Temperature -- 1.2 Machine Learning Algorithms -- 1.3 Dataset -- 2 Literature Survey -- 3 Methodology -- 3.1 Algorithm Followed for Developing the Models -- 3.2 Data Preprocessing -- 3.3 Working of the Models -- 3.4 Model Training -- 3.5 Model Testing -- 3.6 Model Performance Determination -- 4 Results and Discussion -- 5 Conclusion -- References -- ANN-based Hybridization Approach for Detection of Cardiac Disease -- 1 Introduction -- 1.1 Feedforward Networks (FFN) -- 1.2 Feedback Networks -- 1.3 ANN Learning -- 2 Literature Review -- 3 Problem Formulation -- 4 Proposed System -- 5 Algorithms -- 5.1 Artificial Neural Network (ANN) -- 5.2 Gradient Descent Algorithm -- 5.3 Genetic Algorithm -- 6 Error Back Propagation (EBP) -- 7 Machine Learning Network -- 8 Benefits of Genetic Algorithm in Neural Network -- 9 Tests and Results -- 10 Conclusion and Future Scope -- References -- The Implementation of Enhanced K-Strange Points Clustering Method in Classifying Undergraduate Thesis Titles -- 1 Introduction -- 1.1 Motivation -- 2 Illustration of Enhanced K-Strange Points Clustering Algorithm -- 3 Research Method -- 3.1 Research Data -- 3.2 Text Mining -- 3.3 Enhanced K-Strange Points Clustering Algorithm -- 3.4 Silhouette Coefficient Testing -- 4 Mathematical Illustration. 4.1 Step I: Finding the Minimum of the Dataset (Kmin) -- 4.2 Step II: Finding the Maximum of the Dataset (Kmax) -- 4.3 Step III: Finding the Third Strange Point -- 4.4 Step IV: Correcting the K-Strange Point -- 4.5 Step V: Assigning Points to Respective Clusters -- 5 Result and Discussion -- 5.1 Collect Data -- 5.2 Text Parsing -- 5.3 The Process of Document Clustering -- 5.4 Testing -- 6 Conclusion -- References -- Spam Email Detection Using Machine Learning and Neural Networks -- 1 Introduction -- 2 Literature Review -- 2.1 Existing System -- 3 Proposed Methodology -- 3.1 Data Set Reading and Inspection -- 3.2 Text Preprocessing -- 3.3 Feature Sets and Vectorization -- 3.4 Pipeline and Modeling -- 4 Results -- 5 Conclusion -- References -- Online Appointment Management System in Hospitals Using Distributed Resource Allocation Algorithm -- 1 Introduction -- 2 Literature Survey -- 3 Proposed System -- 3.1 Module Description -- 3.2 Distributed Resource Allocation Algorithm -- 3.3 Data Flow -- 4 Experimental Result -- 5 Conclusion -- References -- BeFit-A Real-Time Workout Analyzer -- 1 Introduction -- 2 Related Work -- 3 Methodology Adopted -- 3.1 Working of PoseNet Model -- 3.2 Comparison Analysis -- 3.3 Detecting User's Pose -- 3.4 Getting Pose from Yoga/Gym Workout Selected -- 3.5 Comparing the Skeletons -- 3.6 Data Stream Handling -- 4 Final Implementation -- 5 Advantages -- 6 Future Scope -- 7 Results -- 8 Conclusion -- References -- Analysis of Car Damage for Personal Auto Claim Using CNN -- 1 Introduction -- 2 Literature Survey -- 3 Design -- 4 Proposed Method -- 5 Results and Simulation -- 6 Conclusion -- References -- On the Analysis Problem of the Attribute-Based Access Control Model HGABAC -- 1 Introduction -- 2 HGABAC: An ABAC Model and Its Administrative Model GRUAG -- 3 Automated Analysis Technique for GURAG System -- 4 Evaluation. 5 Conclusions. |
Record Nr. | UNINA-9910506400703321 |
Shakya Subarna | ||
Singapore : , : Springer Singapore Pte. Limited, , 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|