top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Coating Materials [[electronic resource] ] : Computational Aspects, Applications and Challenges / / edited by Akarsh Verma, Sushanta K. Sethi, Shigenobu Ogata
Coating Materials [[electronic resource] ] : Computational Aspects, Applications and Challenges / / edited by Akarsh Verma, Sushanta K. Sethi, Shigenobu Ogata
Autore Verma Akarsh
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (419 pages)
Disciplina 667.9
Altri autori (Persone) SethiSushanta K
OgataShigenobu
Collana Materials Horizons: From Nature to Nanomaterials
Soggetto topico Coatings
Molecular dynamics
Corrosion and anti-corrosives
Surfaces (Technology)
Thin films
Nanotechnology
Molecular Dynamics
Corrosion
Surfaces, Interfaces and Thin Film
ISBN 981-9935-49-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction to Coatings: Types and their synthesis -- Chapter 2.Recent progress in computational techniques in various Coating materials -- Chapter 3. Self-clean Coatings -- Chapter 4. Anti-corrosion and anti-fouling Coatings -- Chapter 5. Fire retardant or fire-resistive Coatings -- Chapter 6. Metal Coatings -- Chapter 7. Polymers in Coatings -- Chapter 8. Plastics in Coatings -- Chapter 9. Modern coating processes and technologies -- Chapter 10. Characterization for Coating materials -- Chapter 11. Molecular dynamics (MD) simulations in Coatings -- Chapter 12. Coarse-grain simulations in Coatings -- Chapter 13. Continuum mechanics-based simulations in Coatings -- Chapter 14. Applications of Coating materials -- Chapter 15. Future and Challenges of Coating materials.
Record Nr. UNINA-9910734879303321
Verma Akarsh  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hybrid Composite Materials : Experimental and Theoretical Analysis
Hybrid Composite Materials : Experimental and Theoretical Analysis
Autore Verma Akarsh
Edizione [1st ed.]
Pubbl/distr/stampa Singapore : , : Springer, , 2024
Descrizione fisica 1 online resource (0 pages)
Altri autori (Persone) GuptaHariome Sharan
SethiSushanta K
ISBN 981-9721-04-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Synthesis and Applications of Different Polymer Composites -- 1.1 Introduction -- 1.2 Types of Composite Polymers -- 1.3 Formulation of Composite Materials -- 1.3.1 Matrix -- 1.3.2 Elastomers -- 1.3.3 Role of Elastomers in the Formation of Composite Polymers -- 1.3.4 Reinforcement -- 1.3.5 Filler -- 1.3.6 Metallic Charges -- 1.3.7 Additive -- 1.3.8 Lubricants -- 1.3.9 Plasticizers -- 1.3.10 Stabilizers -- 1.4 Manufacturing of Polymers -- 1.4.1 Surface Coating Technology -- 1.4.2 Additive Manufacturing, -- 1.5 Numerical Simulation of the Polymer Composite Manufacturing Process -- 1.6 Applications -- 1.6.1 Automobile Application -- 1.6.2 Aerospace Application -- 1.6.3 Marine Application -- 1.6.4 Biomedical Application -- 1.6.5 Civil Application -- 1.6.6 Magnetic -- 1.6.7 Energy Storage -- 1.6.8 Petrochemicals -- 1.7 Conclusions -- 2 Polymer Composites: Its Processing, Advantages, Properties and Applications -- 2.1 Introduction -- 2.1.1 Polymer -- 2.1.2 Composites -- 2.2 Polymer Matrix Composites -- 2.2.1 Glass Fiber-Reinforced Polymer (GFRP) Composites -- 2.2.2 Carbon Fiber-Reinforced Polymer (CFRP) Composites -- 2.2.3 Aramid Fiber-Reinforced Polymer Composites -- 2.2.4 Other Fiber Reinforcement Materials -- 2.3 Manufacturing Technique -- 2.3.1 Pultrusion Process -- 2.3.2 Resin Transfer Moulding Process -- 2.3.3 Spray Layup Process -- 2.3.4 Filament Winding Process -- 2.3.5 Injection Molding Process -- 2.3.6 Diaphragm Process -- 2.4 Advantages of Polymer Matrix Composites -- 2.5 Properties -- 2.5.1 Reinforced Polymer Composites -- 2.5.2 Particulate Polymer Composites -- 2.6 Applications -- 2.6.1 Aerospace Industry -- 2.6.2 Automotive Industry -- 2.6.3 Marine Industry -- 2.6.4 Military Industry -- 2.6.5 Electronic Circuit Board -- 2.6.6 Electronic Packaging -- 2.6.7 Household Appliances -- 2.6.8 Construction Materials.
2.6.9 Boards of Musical Instruments -- 2.6.10 Hydraulic Cylinder -- 2.7 Conclusion and Future Direction -- References -- 3 Polymer Composites for Environmental Solutions and Remediation -- 3.1 Introduction -- 3.2 Polymer Composites: A Sustainable Approach -- 3.2.1 Water Treatment and Filtration -- 3.2.2 Air Pollution Control -- 3.2.3 Soil and Groundwater Remediation -- 3.2.4 Waste Management -- 3.2.5 Waste-To-Energy Conversion -- 3.2.6 Environmental Sensing and Monitoring -- 3.2.7 Renewable Energy System -- 3.3 Conclusion and Future Prospective -- References -- 4 Composite Materials for Bio-Energy -- 4.1 Introduction -- 4.2 Composite Polymeric Materials (CPM) -- 4.2.1 Composite Polymeric Materials (CPM) for Catalysis -- 4.2.2 Composite Polymeric Materials for Energy Production -- 4.2.3 Composite Polymeric Materials for Energy Storage -- 4.2.4 Composite Polymeric Materials for Environmental Applications -- 4.3 Composite Materials for Bio-Electrochemical Systems -- 4.3.1 Composite Polymeric Materials as Electrodes -- 4.3.2 Composite Polymeric Materials for Proton Exchange Membranes -- 4.3.3 Composite Polymeric Materials as Electro-Catalyst -- 4.3.4 Composite Polymeric Materials for Bio-Compatible Coatings -- 4.3.5 Composite Polymeric Materials for Anti Fouling Applications -- 4.4 Conclusion -- References -- 5 Polymer Nanocomposites for EMI Shielding Applications -- 5.1 Introduction -- 5.1.1 EMI Shielding Effectiveness (EMI-SE) -- 5.1.2 EMI Shielding Mechanisms -- 5.1.3 Experimental Determination of EMI SE -- 5.2 Types of Nanofillers Used in Polymer Nanocomposites for EMI Shielding -- 5.2.1 Carbon-Based Fillers -- 5.2.2 MXenes-Based Nanofillers -- 5.2.3 Metal Nanofillers -- 5.2.4 Magnetic Nanofillers -- 5.2.5 Hybrid Nanofillers -- 5.3 Conclusion and Future Prospects -- References.
6 Recent Advances in Polymer-Composite Materials for Biomedical Applications -- 6.1 Introduction -- 6.1.1 Overview of Polymer-Composite Materials -- 6.1.2 Importance of Polymer-Composites in Biomedical Applications -- 6.2 Objectives of the Chapter -- 6.3 Fundamentals of Biocompatible Polymer-Composite Materials -- 6.3.1 Classification of Biocompatible Polymer-Composites -- 6.3.2 Reinforcements and Matrix Materials in Polymer-Composites -- 6.4 Manufacturing Techniques for Biocompatible Polymer-Composites -- 6.4.1 Sheet Molding Compound (SMC) -- 6.4.2 Injection Molding Polymer Matrix Composite Technique -- 6.4.3 Additive Manufacturing Polymer Matrix Composite Technique -- 6.4.4 Pultrusion Manufacturing Process -- 6.4.5 Resin Transfer Molding (RTM) -- 6.4.6 Thermoforming Process -- 6.5 Polymer-Composite Materials in Tissue Engineering -- 6.5.1 Role of Polymer-Composites in Tissue Engineering Scaffolds -- 6.5.2 Design and Fabrication of Polymer-Composite Scaffolds -- 6.6 Advance Polymer-Composite Materials for Biomedical Applications -- 6.6.1 Organic Biocompatible Composites (Organic Particle with Polymer System) -- 6.6.2 Inorganic/organic Combination (Inorganic Particle/polymer System) -- 6.6.3 Solid Inorganic Particle-Based Biocompatible Polymer Composites -- 6.6.4 Miscellaneous Inorganic-Polymer Biocompatible Composites -- 6.7 Applications of Polymer-Composites in Regenerative Medicine -- 6.8 Polymer-Composite Materials for Drug Delivery Systems and Overview -- 6.8.1 Overview of Drug Delivery Systems -- 6.9 Polymer-Composite Materials in Implantable Devices -- 6.9.1 Mechanical and Physical Properties of Polymer-Composite Implants -- 6.9.2 Examples of Polymer Composite Implantable Devices -- 6.10 Conclusion -- References -- 7 Applications of Deep Learning for Composites Materials -- 7.1 Introduction -- 7.2 Challenges in Composite Materials.
7.3 Getting Familiar with Basics of Deep Learning and Machine Learning -- 7.4 Significance of ML and DL in Composite Materials -- 7.5 Some Common ML Techniques Used in CMs -- 7.5.1 Predictive Modeling -- 7.5.2 Image Analysis -- 7.5.3 Process Optimization -- 7.5.4 Quality Control -- 7.5.5 Material Discovery -- 7.6 Popular Applications of DL for CMs -- 7.6.1 Material Characterization Using Deep Learning -- 7.6.2 Structural Health Monitoring of Composite Materials Using Deep Learning -- 7.6.3 Process Optimization for Composite Materials Using Deep Learning -- 7.6.4 Material Design for Composite Materials Using Deep Learning -- 7.6.5 Predicting Mechanical Properties of Composite Materials Using Deep Learning -- 7.6.6 Predicting Failure Behavior of Composite Materials Using Deep Learning -- 7.6.7 Optimizing Manufacturing Processes of Composite Materials Using Deep Learning -- 7.6.8 Designing Composite Materials for Specific Applications Using Deep Learning -- 7.6.9 Predicting Thermal and Mechanical Behavior of Composite Materials Using Deep Learning -- 7.6.10 Optimization of Composite Structures Using Deep Learning -- 7.6.11 Manufacturing and Production of Composite Materials Using Deep Learning -- 7.6.12 Developing New Composite Materials with Deep Learning -- 7.7 Future Directions in the Application of Deep Learning for Composite Materials -- 7.7.1 Multiscale Modeling and Simulation -- 7.7.2 Real-Time Monitoring and Control -- 7.7.3 Data Acquisition and Preprocessing -- 7.7.4 Explainable AI -- 7.7.5 Uncertainty Quantification -- 7.7.6 Material Discovery and Design -- 7.8 Conclusion -- References -- 8 Advancements in Metal Oxide/Polymer Nanocomposite Utilized as Photocatalysts for Wastewater Remediation -- 8.1 Introduction -- 8.2 Fundamental Properties of Polymeric Materials -- 8.3 Properties of Metal Oxides -- 8.3.1 Zinc Oxide (ZnO).
8.3.2 Titanium Oxide (TiO2) -- 8.3.3 Tin Oxide (SnO2) -- 8.3.4 Iron Oxide (Fe3O4) -- 8.3.5 Nickel Oxide (NiO) -- 8.4 Recent Development of Metal Oxide/Polymer Nanocomposites -- 8.5 Degradation Mechanism of Dye by Using Composite Materials -- 8.6 Conclusion -- References -- 9 Polymer Based Composite Coatings in Engineering Applications -- 9.1 Introduction -- 9.2 Synthesis Techniques of Polymer Composites -- 9.2.1 Physical Method -- 9.2.2 Chemical Method -- 9.2.3 Biological Method -- 9.2.4 Simple Blending -- 9.2.5 Spray Drying -- 9.2.6 Electrospinning and Melt Extrusion -- 9.2.7 Miscellaneous Methods -- 9.3 Applications -- 9.3.1 Biomedical Applications -- 9.3.2 Self-healing Polymers Coatings for Fatigue Repair and Corrosion Inhibition -- 9.3.3 Food Packaging -- 9.3.4 Aerospace Expeditions -- 9.3.5 Automotive Applications -- 9.3.6 Superhydrophobic Polymer Coatings -- 9.3.7 Other Applications -- 9.4 Conclusions -- References -- 10 Self-Healing of Polymer Composites: Process and Developments -- 10.1 Introduction -- 10.2 Types of Self-healing Materials -- 10.2.1 Polymeric Self-healing Materials -- 10.2.2 Composite Self-healing Materials -- 10.3 Fabrication of Self-healing Polymeric Composites -- 10.3.1 Extrusion -- 10.3.2 Solution Processing -- 10.3.3 Solvent Casting -- 10.4 Testing and Characterization of Composites -- 10.4.1 Mechanical Properties -- 10.4.2 Thermal Properties -- 10.4.3 Morphology (SEM) -- 10.5 Conclusions and Future Prospectives -- References -- 11 Optimization of Laminated Composite Structures -- 11.1 Introduction -- 11.2 A Primer on Optimization -- 11.2.1 Objective Functions -- 11.2.2 Convexity -- 11.2.3 Solving the Optimization Problem and Gradient Descent -- 11.2.4 Example: Optimizing a Linear Regression Model -- 11.3 Genetic Algorithms -- 11.3.1 Mathematical Variables -- 11.3.2 Objective Function -- 11.3.3 Constraints.
11.3.4 GA Implementation.
Record Nr. UNINA-9910861095703321
Verma Akarsh  
Singapore : , : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui