top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Photonic Materials for Sensing, Biosensing and Display Devices / / edited by Michael J. Serpe, Youngjong Kang, Qiang Matthew Zhang
Photonic Materials for Sensing, Biosensing and Display Devices / / edited by Michael J. Serpe, Youngjong Kang, Qiang Matthew Zhang
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (376 p.)
Disciplina 382.45621381045
Collana Springer Series in Materials Science
Soggetto topico Optical materials
Electronic materials
Lasers
Photonics
Semiconductors
Nanotechnology
Biophysics
Biological physics
Optical and Electronic Materials
Optics, Lasers, Photonics, Optical Devices
Biological and Medical Physics, Biophysics
ISBN 3-319-24990-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto From the contents: One-dimensional micro/nanofibers or nanowire as sensors -- Surface-enhanced Raman scattering (SERS) for detection of cancer biomarkers -- Optical and electrical properties of nanomaterials -- Nanowire photonics -- Magnetically responsive photonic crystals -- Colloidal crystals for sensing applications -- Fabrication of polymeric microstructures with multi-scale and photonic responsive materials -- Nano-/micro-structured functional material for biosensors -- Polymer material for optical sensing -- Novel function nanomaterials for sensors, and actuators -- Photonic crystals for sensors and display devices.
Record Nr. UNINA-9910254048103321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart Stimuli-Responsive Polymers, Films, and Gels
Smart Stimuli-Responsive Polymers, Films, and Gels
Autore Hu Liang
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (402 pages)
Altri autori (Persone) GaoYongfeng
SerpeMichael J
Soggetto genere / forma Electronic books.
ISBN 3-527-83238-6
3-527-83237-8
3-527-83239-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 From Mechanochemistry to Mechanoresponsive Materials -- 1.1 Introduction -- 1.2 Mechanochemistry in Biological Systems -- 1.2.1 A Stressful Environment During Heart Development -- 1.2.2 Protein Unfolding by Force -- 1.2.3 Stress Mitigation by Tissue -- 1.2.4 Sensing by Ion Channel Opening -- 1.3 Mechanistic View of Mechanochemistry -- 1.4 Polymer Covalent Mechanochemistry -- 1.4.1 Pyran‐Based Mechanochromophores -- 1.4.2 Retro‐Cycloadditions -- 1.4.3 Ladderenes -- 1.4.4 Stable Radical Systems -- 1.4.5 Other Types of Mechanophores -- 1.5 Polymer Noncovalent Mechanochemistry -- 1.5.1 Mechanoresponses of Metal-Ligand Bonds -- 1.5.2 Mechanochemistry of Other Noncovalent Interactions and Their Applications in Functional Polymers -- 1.6 Conclusions -- References -- Chapter 2 Photoresponsive Polymers -- 2.1 Introduction -- 2.2 Photoresponsive Polymers -- 2.2.1 Photoluminescent Polymers -- 2.2.1.1 Fluorescent Polymers -- 2.2.1.2 Phosphorescent Polymers -- 2.2.2 Photochromic Polymers -- 2.2.3 Photocleavable Polymers -- 2.2.4 Photodimerizable Polymers -- 2.2.5 Photoadaptable Polymers -- 2.3 Applications of Photoresponsive Polymers -- 2.3.1 Smart Polymeric Inks -- 2.3.2 Polymer Sensors -- 2.3.3 Photolithography -- 2.3.4 Surface Active Agents -- 2.3.5 Photorheological Polymers -- 2.3.6 Self‐Healing Polymers -- 2.3.7 Shape‐Changing Polymers -- 2.3.8 Photoconductive Polymers -- 2.3.9 Drug Delivery -- 2.3.10 Membranes, Films, and Textiles -- 2.4 Summary and the Future -- 2.4.1 Water Contact Angle Variation -- 2.4.2 Viscosity Variation -- 2.4.3 Color Change and Emission -- 2.4.4 Sol-Gel Transition -- References -- Chapter 3 Polymer Systems for Ionizing Radiation Dosimetry and Radiotherapy -- 3.1 Introduction -- 3.2 Interaction of Radiation with Matter -- 3.2.1 α‐Particles -- 3.2.2 Electrons.
3.2.3 Photons -- 3.3 Polymer Systems for Ionizing Radiation Dosimetry -- 3.3.1 Polymer‐Based Dosimeters -- 3.3.2 Polymer/Dye Dosimeters -- 3.3.3 Fluorescent Polymer Dosimeters -- 3.3.4 Polymer/Metal Nanomaterials Dosimeters -- 3.4 Ionizing Radiation‐Responsive Polymer Systems for Therapy -- 3.5 Conclusion -- Acknowledgments -- References -- Chapter 4 Shrink and Wrinkle - Thermally Responsive Substrates for Thin‐Film Structuring -- 4.1 Structured Thin Films -- 4.2 Measuring the Mechanical Properties of Thin Films Using Thermal Wrinkling -- 4.2.1 Thermally Structured Thin Films for Cell Culture -- 4.2.2 Wrinkled Conductive Thin Films for Wearable Electronics -- 4.2.3 Wrinkled Electrochemical Sensors -- 4.2.4 Current Challenges and Future Perspectives for the Use of Wrinkled Thin Films -- References -- Chapter 5 Design of Nanocomposite Microgels Prepared by Seeded Emulsion Polymerization in the Presence of Microgels -- 5.1 Background on Composite Hydrogels -- 5.2 Background on Composite Microgels -- 5.3 Conventional Emulsion Polymerization and SEP -- 5.4 Nanocomposite Microgels Prepared by SEP in the Presence of Microgels -- 5.5 Design of the Internal Structure of the Nanocomposite Microgels -- 5.6 Synthesis of Multi‐layered Nanocomposite Microgels -- 5.7 Characterization of Nanocomposite Microgels -- 5.8 Applications of Nanocomposite Microgels -- 5.9 Summary and Perspective -- References -- Chapter 6 Compressible Microgels in Concentrated Suspensions: Phase Behavior, Flow Properties, and Scattering Techniques to Probe Their Structure and Dynamics -- 6.1 Introduction -- 6.2 Swelling Thermodynamics -- 6.2.1 Polymer/Solvent Mixing -- 6.2.2 Elasticity -- 6.2.3 Ionic Effects -- 6.2.4 Equation of State -- 6.3 Experimental Techniques -- 6.3.1 Dynamic Light Scattering -- 6.3.1.1 Auto‐correlation Experiments -- 6.3.1.2 Cross‐correlation and 3D‐DLS Experiments.
6.3.2 Small‐angle Neutron‐scattering -- 6.3.2.1 SANS Setup -- 6.3.2.2 Scattering Theory -- 6.3.2.3 Form Factor and Structure Factor -- 6.3.2.4 Contrast Variation -- 6.4 Suspension Phase Behavior -- 6.5 Flow Properties -- 6.6 Final Remarks -- References -- Chapter 7 Structure and Properties of Smart Micro‐ and Nanogels Determined by (Neutron) Scattering Methods -- 7.1 Introduction -- 7.2 Scattering Techniques Applied to Microgels -- 7.2.1 Static and Dynamic Light Scattering Applied to Microgels -- 7.2.1.1 Static Light Scattering (SLS) -- 7.2.2 Dynamic Light Scattering (DLS/PCS) -- 7.2.3 Small‐Angle Neutron and X‐Ray Scattering Applied to Microgels -- 7.3 Multicompartment and Multi‐Stimuli‐Responsive Microgels -- 7.4 Time‐Resolved Small‐Angle Scattering -- 7.5 Crowded Microgel Systems -- 7.6 Conclusion and Outlook -- Appendix: Absolute Intensity for Fuzzy Sphere Form Factors -- References -- Chapter 8 Stimuli‐Responsive Fluorescent Polymeric Hydrogels -- 8.1 Introduction -- 8.2 Strategies for Preparing Fluorescent Polymeric Hydrogels (FPHs) -- 8.2.1 Physically Incorporating Fluorogens into Polymeric Hydrogels -- 8.2.2 Covalently Bonding Fluorogens into Polymeric Hydrogels -- 8.2.3 Supramolecular Polymerizing/Crosslinking Monomeric Fluorogens -- 8.2.4 Comparison of Different Synthetic Strategies -- 8.3 Promising Applications -- 8.3.1 Optical Sensing and Bio‐imaging -- 8.3.2 Information Encoding and Encryption -- 8.3.3 Bioinspired Mechanosensing Systems and Soft Actuators/Robotics -- 8.4 Conclusions -- References -- Chapter 9 The Fabrication and Applications of Bioinspired Hydrogel Actuators -- 9.1 Introduction -- 9.2 The Classification of Hydrogel Actuators -- 9.2.1 Addition of Active Ingredient -- 9.2.2 Pneumatic/Hydraulic Actuators -- 9.2.3 Stimuli‐Responsive Hydrogel Actuator Derived from Asymmetric Swelling.
9.2.3.1 Single‐Stimulus‐Responsive Hydrogel Actuators -- 9.2.3.2 Multi‐stimuli‐Responsive Hydrogel Actuators -- 9.3 Anisotropic Structures -- 9.3.1 1D/2D Anisotropic Structures -- 9.3.1.1 Bilayer -- 9.3.1.2 Oriented -- 9.3.1.3 Gradient -- 9.3.1.4 Patterned -- 9.3.2 3D Anisotropic Structures -- 9.4 Methods to Fabricate Anisotropic Structures -- 9.4.1 Traditional Technology -- 9.4.1.1 Stepwise Polymerization -- 9.4.1.2 3D Printing -- 9.4.1.3 Macromolecular Assembly -- 9.4.2 Innovative Technology -- 9.5 Applications -- 9.5.1 Soft Robots -- 9.5.2 Artificial Muscles -- 9.5.3 Biomimetic Devices -- 9.5.4 Information Storage Materials -- 9.6 Conclusion -- Conflict of Interest -- Acknowledgments -- References -- Chapter 10 Hydrogels‐Based Electronic Devices for Biosensing Applications -- 10.1 Introduction -- 10.2 Flexible Hydrogel‐Based Sensors -- 10.2.1 Principles of Conductive Hydrogel Sensors -- 10.2.2 Improved Mechanical Properties of Hydrogel‐Based Sensors -- 10.2.3 Prolonged Longevity of Hydrogel Sensors -- 10.2.4 Expanded Usage Scenarios of Hydrogel‐Based Sensors -- 10.2.5 Multifunctionalization and Expanding Application of Hydrogel Sensor -- 10.3 Tissue-Machine Interfaces -- 10.3.1 Design and Mechanism of the Neural Interfaces -- 10.3.2 Multifunctional Applications of Biointerfaces -- 10.4 The Prospects of Hydrogel Bioelectronic Devices -- Acknowledgments -- References -- Index -- EULA.
Record Nr. UNINA-9910590092203321
Hu Liang  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui