top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Functional Imaging and Modeling of the Heart [[electronic resource] ] : 5th International Conference, FIMH 2009 Nice, France, June 3-5, 2009 Proceedings / / edited by Nicholas Ayache, Hervé Delingette, Maxime Sermesant
Functional Imaging and Modeling of the Heart [[electronic resource] ] : 5th International Conference, FIMH 2009 Nice, France, June 3-5, 2009 Proceedings / / edited by Nicholas Ayache, Hervé Delingette, Maxime Sermesant
Edizione [1st ed. 2009.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009
Descrizione fisica 1 online resource (XVII, 537 p.)
Disciplina 006.6
006.37
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Computer simulation
Bioinformatics
Computer graphics
Cardiology
Radiology
Image Processing and Computer Vision
Simulation and Modeling
Computational Biology/Bioinformatics
Computer Graphics
Imaging / Radiology
ISBN 3-642-01932-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cardiac Imaging and Electrophysiology -- Characterization of Post-infarct Scars in a Porcine Model – A Combined Experimental and Theoretical Study -- Evolution of Intracellular Ca2?+? Waves from about 10,000 RyR Clusters: Towards Solving a Computationally Daunting Task -- Cardiac Motion Estimation from Intracardiac Electrical Mapping Data: Identifying a Septal Flash in Heart Failure -- Extracting Clinically Relevant Circular Mapping and Coronary Sinus Catheter Potentials from Atrial Simulations -- Cardiac Architecture Imaging and Analysis -- Cardiac Fibre Trace Clustering for the Interpretation of the Human Heart Architecture -- A Quantitative Comparison of the Myocardial Fibre Orientation in the Rabbit as Determined by Histology and by Diffusion Tensor-MRI -- Adaptive Reorientation of Cardiac Myofibers: Comparison of Left Ventricular Shear in Model and Experiment -- The Purkinje System and Cardiac Geometry: Assessing Their Influence on the Paced Heart -- Noise-Reduced TPS Interpolation of Primary Vector Fields for Fiber Tracking in Human Cardiac DT-MRI -- Comparison of Rule-Based and DTMRI-Derived Fibre Architecture in a Whole Rat Ventricular Computational Model -- Cardiac Imaging -- Fixing the Beating Heart: Ultrasound Guidance for Robotic Intracardiac Surgery -- Lumen Border Detection of Intravascular Ultrasound via Denoising of Directional Wavelet Representations -- A Statistical Approach for Detecting Tubular Structures in Myocardial Infarct Scars -- Quantitative Tool for the Assessment of Myocardial Perfusion during X-Ray Angiographic Procedures -- Multiview RT3D Echocardiography Image Fusion -- Cardiac Electrophysiology -- Investigating Arrhythmogenic Effects of the hERG Mutation N588K in Virtual Human Atria -- Left to Right Atrial Electrophysiological Differences: Substrate for a Dominant Reentrant Source during Atrial Fibrillation -- Electrocardiographic Simulation on Coupled Meshfree-BEM Platform -- HERG Effects on Ventricular Action Potential Duration and Tissue Vulnerability: A Computational Study -- Voxel Based Adaptive Meshless Method for Cardiac Electrophysiology Simulation -- Cardiac Motion Estimation -- Local Cardiac Wall Motion Estimation from Retrospectively Gated CT Images -- Physically-Constrained Diffeomorphic Demons for the Estimation of 3D Myocardium Strain from Cine-MRI -- Coronary Occlusion Detection with 4D Optical Flow Based Strain Estimation on 4D Ultrasound -- Cardiac Motion Extraction from Images by Filtering Estimation Based on a Biomechanical Model -- Active Model with Orthotropic Hyperelastic Material for Cardiac Image Analysis -- Cardiac Mechanics -- Personalised Electromechanical Model of the Heart for the Prediction of the Acute Effects of Cardiac Resynchronisation Therapy -- Ventricular Mechanical Asynchrony in Pulmonary Arterial Hypertension: A Model Study -- A Hybrid Tissue-Level Model of the Left Ventricle: Application to the Analysis of the Regional Cardiac Function in Heart Failure -- Cardiac Electrophysiology -- The Role of Blood Vessels in Rabbit Propagation Dynamics and Cardiac Arrhythmias -- Estimation of Atrial Multiple Reentrant Circuits from Surface ECG Signals Based on a Vectorcardiographic Approach -- Atrial Anatomy Influences Onset and Termination of Atrial Fibrillation: A Computer Model Study -- Cardiac Image Analysis -- Left Ventricle Segmentation from Contrast Enhanced Fast Rotating Ultrasound Images Using Three Dimensional Active Shape Models -- Free-Form Deformations Using Adaptive Control Point Status for Whole Heart MR Segmentation -- Integrating Viability Information into a Cardiac Model for Interventional Guidance -- 3D TEE Registration with X-Ray Fluoroscopy for Interventional Cardiac Applications -- Multi-sequence Registration of Cine, Tagged and Delay-Enhancement MRI with Shift Correction and Steerable Pyramid-Based Detagging -- Segmentation of Left Ventricle in Cardiac Cine MRI: An Automatic Image-Driven Method -- Cardiac Biophysical Simulation -- The Importance of Model Parameters and Boundary Conditions in Whole Organ Models of Cardiac Contraction -- Numerical Simulation of the Electromechanical Activity of the Heart -- A Global Sensitivity Index for Biophysically Detailed Cardiac Cell Models: A Computational Approach -- Cardiac Motion Recovery and Boundary Conditions Estimation by Coupling an Electromechanical Model and Cine-MRI Data -- Atrioventricular Blood Flow Simulation Based on Patient-Specific Data -- Cardiac Research Platforms -- A Software Platform for Real-Time Visualization and Manipulation of 4D Cardiac Images -- euHeartDB: A Web-Enabled Database for Geometrical Models of the Heart -- GIMIAS: An Open Source Framework for Efficient Development of Research Tools and Clinical Prototypes -- Cardiac Image Analysis -- Maximum Likelihood Motion Estimation in 3D Echocardiography through Non-rigid Registration in Spherical Coordinates -- Large Diffeomorphic FFD Registration for Motion and Strain Quantification from 3D-US Sequences -- Random Forest Classification for Automatic Delineation of Myocardium in Real-Time 3D Echocardiography -- Discriminative Joint Context for Automatic Landmark Set Detection from a Single Cardiac MR Long Axis Slice -- Cardiac Anatomical and Functional Imaging -- Cardiac Imaging and Modeling for Guidance of Minimally Invasive Beating Heart Interventions -- Computer-Assisted Open Heart CABG: Image-Guided Navigation for All Target Vessels -- Extraction of Coronary Vascular Tree and Myocardial Perfusion Data from Stacks of Cryomicrotome Images -- Intravoxel Fibre Structure of the Left Ventricular Free Wall and Posterior Left-Right Ventricular Insertion Site in Canine Myocardium Using Q-Ball Imaging -- Cardiac Electrophysiology -- Relationship between Maximal Upstroke Velocity of Transmembrane Voltage and Minimum Time Derivative of Extracellular Potential -- Effects of Anisotropy and Transmural Heterogeneity on the T-Wave Polarity of Simulated Electrograms -- From Intracardiac Electrograms to Electrocardiograms: Models and Metamodels.
Record Nr. UNISA-996466266803316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Functional imaging and modeling of the heart : 5th international conference, FIMH 2009, Nice, France, June 3-5, 2009 : proceedings / / Nicholas Ayache, Herve Delingette, Maxime Sermesant (eds.)
Functional imaging and modeling of the heart : 5th international conference, FIMH 2009, Nice, France, June 3-5, 2009 : proceedings / / Nicholas Ayache, Herve Delingette, Maxime Sermesant (eds.)
Edizione [1st ed. 2009.]
Pubbl/distr/stampa Berlin, : Springer, -Verlag, c2009
Descrizione fisica 1 online resource (XVII, 537 p.)
Disciplina 006.6
006.37
Altri autori (Persone) AyacheNicholas
DelingetteHerve
SermesantMaxime
Collana Lecture notes in computer science
LNCS sublibrary. SL 6, Image processing, computer vision, pattern recognition, and graphics
Soggetto topico Heart - Computer simulation
Heart - Imaging
ISBN 3-642-01932-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cardiac Imaging and Electrophysiology -- Characterization of Post-infarct Scars in a Porcine Model – A Combined Experimental and Theoretical Study -- Evolution of Intracellular Ca2?+? Waves from about 10,000 RyR Clusters: Towards Solving a Computationally Daunting Task -- Cardiac Motion Estimation from Intracardiac Electrical Mapping Data: Identifying a Septal Flash in Heart Failure -- Extracting Clinically Relevant Circular Mapping and Coronary Sinus Catheter Potentials from Atrial Simulations -- Cardiac Architecture Imaging and Analysis -- Cardiac Fibre Trace Clustering for the Interpretation of the Human Heart Architecture -- A Quantitative Comparison of the Myocardial Fibre Orientation in the Rabbit as Determined by Histology and by Diffusion Tensor-MRI -- Adaptive Reorientation of Cardiac Myofibers: Comparison of Left Ventricular Shear in Model and Experiment -- The Purkinje System and Cardiac Geometry: Assessing Their Influence on the Paced Heart -- Noise-Reduced TPS Interpolation of Primary Vector Fields for Fiber Tracking in Human Cardiac DT-MRI -- Comparison of Rule-Based and DTMRI-Derived Fibre Architecture in a Whole Rat Ventricular Computational Model -- Cardiac Imaging -- Fixing the Beating Heart: Ultrasound Guidance for Robotic Intracardiac Surgery -- Lumen Border Detection of Intravascular Ultrasound via Denoising of Directional Wavelet Representations -- A Statistical Approach for Detecting Tubular Structures in Myocardial Infarct Scars -- Quantitative Tool for the Assessment of Myocardial Perfusion during X-Ray Angiographic Procedures -- Multiview RT3D Echocardiography Image Fusion -- Cardiac Electrophysiology -- Investigating Arrhythmogenic Effects of the hERG Mutation N588K in Virtual Human Atria -- Left to Right Atrial Electrophysiological Differences: Substrate for a Dominant Reentrant Source during Atrial Fibrillation -- Electrocardiographic Simulation on Coupled Meshfree-BEM Platform -- HERG Effects on Ventricular Action Potential Duration and Tissue Vulnerability: A Computational Study -- Voxel Based Adaptive Meshless Method for Cardiac Electrophysiology Simulation -- Cardiac Motion Estimation -- Local Cardiac Wall Motion Estimation from Retrospectively Gated CT Images -- Physically-Constrained Diffeomorphic Demons for the Estimation of 3D Myocardium Strain from Cine-MRI -- Coronary Occlusion Detection with 4D Optical Flow Based Strain Estimation on 4D Ultrasound -- Cardiac Motion Extraction from Images by Filtering Estimation Based on a Biomechanical Model -- Active Model with Orthotropic Hyperelastic Material for Cardiac Image Analysis -- Cardiac Mechanics -- Personalised Electromechanical Model of the Heart for the Prediction of the Acute Effects of Cardiac Resynchronisation Therapy -- Ventricular Mechanical Asynchrony in Pulmonary Arterial Hypertension: A Model Study -- A Hybrid Tissue-Level Model of the Left Ventricle: Application to the Analysis of the Regional Cardiac Function in Heart Failure -- Cardiac Electrophysiology -- The Role of Blood Vessels in Rabbit Propagation Dynamics and Cardiac Arrhythmias -- Estimation of Atrial Multiple Reentrant Circuits from Surface ECG Signals Based on a Vectorcardiographic Approach -- Atrial Anatomy Influences Onset and Termination of Atrial Fibrillation: A Computer Model Study -- Cardiac Image Analysis -- Left Ventricle Segmentation from Contrast Enhanced Fast Rotating Ultrasound Images Using Three Dimensional Active Shape Models -- Free-Form Deformations Using Adaptive Control Point Status for Whole Heart MR Segmentation -- Integrating Viability Information into a Cardiac Model for Interventional Guidance -- 3D TEE Registration with X-Ray Fluoroscopy for Interventional Cardiac Applications -- Multi-sequence Registration of Cine, Tagged and Delay-Enhancement MRI with Shift Correction and Steerable Pyramid-Based Detagging -- Segmentation of Left Ventricle in Cardiac Cine MRI: An Automatic Image-Driven Method -- Cardiac Biophysical Simulation -- The Importance of Model Parameters and Boundary Conditions in Whole Organ Models of Cardiac Contraction -- Numerical Simulation of the Electromechanical Activity of the Heart -- A Global Sensitivity Index for Biophysically Detailed Cardiac Cell Models: A Computational Approach -- Cardiac Motion Recovery and Boundary Conditions Estimation by Coupling an Electromechanical Model and Cine-MRI Data -- Atrioventricular Blood Flow Simulation Based on Patient-Specific Data -- Cardiac Research Platforms -- A Software Platform for Real-Time Visualization and Manipulation of 4D Cardiac Images -- euHeartDB: A Web-Enabled Database for Geometrical Models of the Heart -- GIMIAS: An Open Source Framework for Efficient Development of Research Tools and Clinical Prototypes -- Cardiac Image Analysis -- Maximum Likelihood Motion Estimation in 3D Echocardiography through Non-rigid Registration in Spherical Coordinates -- Large Diffeomorphic FFD Registration for Motion and Strain Quantification from 3D-US Sequences -- Random Forest Classification for Automatic Delineation of Myocardium in Real-Time 3D Echocardiography -- Discriminative Joint Context for Automatic Landmark Set Detection from a Single Cardiac MR Long Axis Slice -- Cardiac Anatomical and Functional Imaging -- Cardiac Imaging and Modeling for Guidance of Minimally Invasive Beating Heart Interventions -- Computer-Assisted Open Heart CABG: Image-Guided Navigation for All Target Vessels -- Extraction of Coronary Vascular Tree and Myocardial Perfusion Data from Stacks of Cryomicrotome Images -- Intravoxel Fibre Structure of the Left Ventricular Free Wall and Posterior Left-Right Ventricular Insertion Site in Canine Myocardium Using Q-Ball Imaging -- Cardiac Electrophysiology -- Relationship between Maximal Upstroke Velocity of Transmembrane Voltage and Minimum Time Derivative of Extracellular Potential -- Effects of Anisotropy and Transmural Heterogeneity on the T-Wave Polarity of Simulated Electrograms -- From Intracardiac Electrograms to Electrocardiograms: Models and Metamodels.
Altri titoli varianti FIMH 2009
Record Nr. UNINA-9910484698903321
Berlin, : Springer, -Verlag, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical Atlases and Computational Models of the Heart [[electronic resource] ] : First International Workshop, STACOM 2010, and Cardiac Electrophysical Simulation Challenge, CESC 2010, Held in Conjunction with MICCAI 2010, Beijing, China, September 20, 2010, Proceedings / / edited by Oscar Camara, Mihaela Pop, Kawal Rhode, Maxime Sermesant, Nic Smith, Alistair Young
Statistical Atlases and Computational Models of the Heart [[electronic resource] ] : First International Workshop, STACOM 2010, and Cardiac Electrophysical Simulation Challenge, CESC 2010, Held in Conjunction with MICCAI 2010, Beijing, China, September 20, 2010, Proceedings / / edited by Oscar Camara, Mihaela Pop, Kawal Rhode, Maxime Sermesant, Nic Smith, Alistair Young
Edizione [1st ed. 2010.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2010
Descrizione fisica 1 online resource (XII, 292 p. 140 illus.)
Disciplina 006
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Artificial intelligence
Optical data processing
Bioinformatics
Information storage and retrieval
User interfaces (Computer systems)
Multimedia information systems
Artificial Intelligence
Image Processing and Computer Vision
Computational Biology/Bioinformatics
Information Storage and Retrieval
User Interfaces and Human Computer Interaction
Multimedia Information Systems
Soggetto genere / forma Kongress
ISBN 1-280-38911-7
9786613567031
3-642-15835-8
Classificazione 610
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Keynote Presentations -- Atlas Construction and Image Analysis Using Statistical Cardiac Models -- Patient-Specific Modeling of the Heart: Applications to Cardiovascular Disease Management -- The Generation of Patient-Specific Heart Models for Diagnosis and Interventions -- Methods and Infrastructure for Atlas Construction -- The Cardiac Atlas Project: Rationale, Design and Procedures -- The Cardiac Atlas Project: Preliminary Description of Heart Shape in Patients with Myocardial Infarction -- The Cardiac Atlas Project: Development of a Framework Integrating Cardiac Images and Models -- Atlas-Based Quantification of Myocardial Motion Abnormalities: Added-value for the Understanding of CRT Outcome? -- Towards High-Resolution Cardiac Atlases: Ventricular Anatomy Descriptors for a Standardized Reference Frame -- Structure and Flow -- Robust Atlas-Based Segmentation of Highly Variable Anatomy: Left Atrium Segmentation -- Atlas-Based Reduced Models of Blood Flows for Fast Patient-Specific Simulations -- Image and Physiological Data Fusion for Guidance and Modelling of Cardiac Resynchronization Therapy Procedures -- A Multi-method Approach towards Understanding the Pathophysiology of Aortic Dissections – The Complementary Role of In-Silico, In-Vitro and In-Vivo Information -- Endowing Canonical Geometries to Cardiac Structures -- Automatic Segmentation of Left Atrial Geometry from Contrast-Enhanced Magnetic Resonance Images Using a Probabilistic Atlas -- Interactive Cardiac Image Analysis for Biventricular Function of the Human Heart -- Cardiac Motion Estimation Using a ProActive Deformable Model: Evaluation and Sensitivity Analysis -- Investigating Heart Failure Using Ventricular Imaging and Modelling -- Incorporating Low-Level Constraints for the Retrieval of Personalised Heart Models from Dynamic MRI -- Volumetric Myocardial Mechanics from 3D+t Ultrasound Data with Multi-model Tracking -- Mechanics and Motion -- Cardiac Active Contraction Parameters Estimated from Magnetic Resonance Imaging -- Electrophysiology and Electrical Activation -- Recovering Cardiac Electrical Activity from Medical Image Sequence: A Model-Based Approach -- Non-invasive Activation Times Estimation Using 3D Echocardiography -- Modeling Drug Effects on Personalized 3D Models of the Heart: A Simulation Study -- How Much Geometrical Detail Do We Need in Cardiac Electrophysiological Imaging? A Generic Heart-Torso Representation for Fast Subject-Specific Customization -- Influence of Geometric Variations on LV Activation Times: A Study on an Atlas-Based Virtual Population -- Computational Electrophysiological Simulation Challenge (CESC 2010) -- Generic Conduction Parameters for Predicting Activation Waves in Customised Cardiac Electrophysiology Models -- A Statistical Physiological-Model-Constrained Framework for Computational Imaging of Subject-Specific Volumetric Cardiac Electrophysiology Using Optical Imaging and MRI Data -- Estimation of Reaction, Diffusion and Restitution Parameters for a 3D Myocardial Model Using Optical Mapping and MRI -- Personalization of Fast Conduction Purkinje System in Eikonal-Based Electrophysiological Models with Optical Mapping Data.
Record Nr. UNISA-996465939803316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2010
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges [[electronic resource] ] : 8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada, September 10-14, 2017, Revised Selected Papers / / edited by Mihaela Pop, Maxime Sermesant, Pierre-Marc Jodoin, Alain Lalande, Xiahai Zhuang, Guang Yang, Alistair Young, Olivier Bernard
Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges [[electronic resource] ] : 8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada, September 10-14, 2017, Revised Selected Papers / / edited by Mihaela Pop, Maxime Sermesant, Pierre-Marc Jodoin, Alain Lalande, Xiahai Zhuang, Guang Yang, Alistair Young, Olivier Bernard
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XIII, 260 p. 94 illus.)
Disciplina 611.12
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Artificial intelligence
Image Processing and Computer Vision
Artificial Intelligence
ISBN 3-319-75541-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- Regular Papers -- Multiview Machine Learning Using an Atlas of Cardiac Cycle Motion -- 1 Introduction -- 2 Materials -- 3 Methods -- 3.1 Motion Atlas Formation -- 3.2 Multiview Classification -- 4 Experiments and Results -- 5 Discussion -- References -- Joint Myocardial Registration and Segmentation of Cardiac BOLD MRI -- 1 Introduction -- 2 Background -- 3 Methods -- 3.1 Dictionary Learning Based Image Segmentation -- 3.2 Graph-Based Joint Optimization -- 3.3 Dictionary Update -- 4 Experimental Results -- 4.1 Data Preparation and Implementation Details -- 4.2 Visual Evaluation -- 4.3 Quantitative Comparison -- 4.4 CAP Dataset -- 5 Conclusion -- References -- Transfer Learning for the Fully Automatic Segmentation of Left Ventricle Myocardium in Porcine Cardiac Cine MR Images -- Abstract -- 1 Introduction -- 2 Method -- 2.1 Data Description -- 2.2 Image Preprocessing -- 2.3 CNN Architecture and Training Setup -- 2.4 Transfer Learning -- 3 Experiments and Results -- 4 Conclusion and Discussions -- References -- Left Atrial Appendage Neck Modeling for Closure Surgery -- 1 Introduction -- 2 LAA Segmentation -- 3 LAA Neck Modeling -- 3.1 Auto-Detection of the Ostium of the LAA -- 3.2 Establishment of the Standard Coordinate System Based on the Ostium Plane -- 3.3 Auto-Building of Circumscribed Cylindrical Model of LAA Neck -- 4 Experiments and Results -- 4.1 Dataset -- 4.2 Ground Truth -- 4.3 Evaluation -- 5 Conclusion -- References -- Detection of Substances in the Left Atrial Appendage by Spatiotemporal Motion Analysis Based on 4D-CT -- 1 Introduction -- 2 Method -- 2.1 Extraction of Optical Flow Fields of Adjacent Phase -- 2.2 The Tracking of Key Voxels in Whole Cardiac Cycle -- 2.3 Hierarchical Clustering of All Trajectory Curves.
2.4 Time-Frequency Analysis of the Track Curve of Critical Lumps - to Realize the Stress and Strain Detection of Lumps -- 3 Experiment and Discussion -- 3.1 Dataset -- 3.2 Evaluation and Results -- 4 Conclusion -- References -- Estimation of Healthy and Fibrotic Tissue Distributions in DE-CMR Incorporating CINE-CMR in an EM Algorithm -- 1 Introduction -- 2 Methods -- 3 Experimental Results -- 4 Conclusions -- References -- Multilevel Non-parametric Groupwise Registration in Cardiac MRI: Application to Explanted Porcine Hearts -- 1 Introduction -- 2 Methods -- 2.1 Data Acquisition -- 2.2 Pairwise Registration of the Anatomical MR Images -- 3 Groupwise Registration -- 4 Results -- 5 Future Work and Conclusions -- References -- ACDC Challenge -- GridNet with Automatic Shape Prior Registration for Automatic MRI Cardiac Segmentation -- 1 Introduction -- 2 Our Method -- 2.1 Shape Prior -- 2.2 Loss -- 2.3 Proposed Network -- 3 Experimental Setup and Results -- 3.1 Dataset, Evaluation Criteria, and Other Methods -- 3.2 Experimental Results -- 4 Conclusion -- References -- A Radiomics Approach to Computer-Aided Diagnosis with Cardiac Cine-MRI -- 1 Introduction -- 2 Method -- 2.1 Data Description -- 2.2 Semi-automatic Segmentation -- 2.3 Radiomics Features for Cardiac Diagnosis -- 2.4 Classification Method -- 2.5 Radiomic Feature Selection -- 3 Results -- 4 Conclusions -- References -- Fast Fully-Automatic Cardiac Segmentation in MRI Using MRF Model Optimization, Substructures Tracking and B-Spline Smoothing -- 1 Introduction -- 2 Automatic Localization of the Heart -- 3 Segmentation of an ED Phase Slice in Between Base and Mid-Ventricle -- 4 Segmentation Based on Tracking the Cardiac Substructures in ED Phase -- 5 Segmentation in the ES Phase -- 6 Left Ventricle Epicardial Boundary Smoothing -- 7 Global Results and First Conclusions -- References.
Automatic Segmentation and Disease Classification Using Cardiac Cine MR Images -- 1 Introduction -- 2 Data -- 3 Methods -- 3.1 Segmentation -- 3.2 Diagnosis -- 4 Experiments and Results -- 4.1 Segmentation Results -- 4.2 Diagnosis Results -- 5 Discussion and Conclusion -- References -- An Exploration of 2D and 3D Deep Learning Techniques for Cardiac MR Image Segmentation -- 1 Introduction -- 2 Method -- 2.1 Pre-Processing -- 2.2 Network Architectures -- 2.3 Optimisation -- 2.4 Post-Processing -- 3 Experiments and Results -- 3.1 Data -- 3.2 Evaluation Measures -- 3.3 Experiment 1: Comparison of Loss Functions -- 3.4 Experiment 2: Comparison of Network Architectures -- 3.5 Discussion and Conclusion -- References -- Automatic Cardiac Disease Assessment on cine-MRI via Time-Series Segmentation and Domain Specific Features -- 1 Introduction -- 2 Methods -- 2.1 Cardiac cine-MRI Dataset -- 2.2 Segmentation -- 2.3 Cardiac Disease Classification -- 3 Results -- 4 Discussion -- References -- 2D-3D Fully Convolutional Neural Networks for Cardiac MR Segmentation -- 1 Introduction -- 2 Method -- 2.1 Network Architecture -- 2.2 Dataset, Preprocessing and Augmentation -- 2.3 Training -- 2.4 Optimization Function -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Densely Connected Fully Convolutional Network for Short-Axis Cardiac Cine MR Image Segmentation and Heart Diagnosis Using Random Forest -- 1 Introduction and Related Work -- 2 Our Method -- 2.1 Data Pre-processing Pipeline -- 2.2 Proposed Network Architecture: Densely Connected Fully Convolutional Network (DFCN) -- 2.3 Loss Function -- 2.4 Post-processing -- 2.5 Cardiac Disease Diagnosis -- 3 Experimental Setup and Results -- 3.1 Dataset and Evaluation Criteria -- 3.2 Experimental Results -- 3.3 Conclusion -- References.
Class-Balanced Deep Neural Network for Automatic Ventricular Structure Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Efficient Semantic Labeling with 3D FCN -- 2.2 Transfer Learning from C3D Model -- 2.3 Promote Training with Deep Supervision -- 2.4 Investigation of Class-Balanced Loss -- 3 Experimental Results -- 4 Conclusions -- References -- Automatic Segmentation of LV and RV in Cardiac MRI -- Abstract -- 1 Introduction -- 2 Methods -- 2.1 Dataset -- 2.2 Preprocessing -- 2.3 Architecture -- 3 Experimental Results -- 3.1 Implemented Details -- 3.2 Results and Quantitative Analysis with Other Methods -- 4 Conclusion and Discussion -- Acknowledgement -- References -- Automatic Multi-Atlas Segmentation of Myocardium with SVF-Net -- 1 Introduction -- 2 Rigid Alignment by Landmarks Detection -- 3 Non-rigid Diffeomorphic Registration with SVF-Net -- 4 Label Fusion Method -- 5 Results and Discussion -- 6 Conclusion -- References -- MM-WHS Challenge -- 3D Convolutional Networks for Fully Automatic Fine-Grained Whole Heart Partition -- 1 Introduction -- 2 Methodology -- 2.1 Dense Semantic Labeling with 3D FCN -- 2.2 Knowledge Transfer from C3D Model -- 2.3 Promote Training with Deep Supervision -- 2.4 Multi-class Balanced Loss Function -- 3 Experimental Results -- 4 Conclusions -- References -- Multi-label Whole Heart Segmentation Using CNNs and Anatomical Label Configurations -- 1 Introduction -- 2 Method -- 3 Experimental Setup -- 4 Results and Discussion -- 5 Conclusion -- References -- Multi-Planar Deep Segmentation Networks for Cardiac Substructures from MRI and CT -- 1 Introduction -- 2 Multi-Object Multi-Planar CNN (MO-MP-CNN) -- 3 Experimental Results -- 4 Discussion and Conclusion -- References -- Local Probabilistic Atlases and a Posteriori Correction for the Segmentation of Heart Images -- 1 Introduction -- 2 Methods.
2.1 Construction of the a Priori Information -- 2.2 Segmentation -- 2.3 A Posteriori Correction -- 3 Experiments -- 4 Results -- 5 Conclusion -- References -- Hybrid Loss Guided Convolutional Networks for Whole Heart Parsing -- 1 Introduction -- 2 Methodology -- 2.1 Intensity Calibration as Preprocessing -- 2.2 Enhance the Training of 3D FCN -- 2.3 Hybrid Loss Guided Class-Balanced Segmentation -- 3 Experimental Results -- 4 Conclusions -- References -- 3D Deeply-Supervised U-Net Based Whole Heart Segmentation -- 1 Introduction -- 2 Method -- 2.1 Data Pre-processing -- 2.2 Network Architecture -- 3 Experiments and Results -- 3.1 Data -- 3.2 Performance on Training Set -- 3.3 Performance on Testing Set -- 4 Discussion and Conclusion -- References -- MRI Whole Heart Segmentation Using Discrete Nonlinear Registration and Fast Non-local Fusion -- 1 Introduction and Related Work -- 2 Discrete Registration -- 3 Non-local Label Fusion -- 4 Multi-label Random Walk Regularisation -- 5 Discussion and Conclusion -- References -- Automatic Whole Heart Segmentation Using Deep Learning and Shape Context -- 1 Introduction -- 2 Methods -- 2.1 2.5D Segmentation Using Orthogonal U-Nets -- 2.2 Shape Context Generation -- 2.3 Shape-Context Guided U-Net -- 2.4 Implementation Details -- 3 Results -- 4 Discussion and Conclusion -- References -- Automatic Whole Heart Segmentation in CT Images Based on Multi-atlas Image Registration -- Abstract -- 1 Introduction -- 2 Methodology -- 2.1 A Three-Step Multi-atlas-Based Whole Heart Segmentation -- 2.2 Multiple Atlas Images -- 3 Experimental Results -- 4 Conclusion -- References -- Author Index.
Record Nr. UNISA-996465519703316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges : 8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada, September 10-14, 2017, Revised Selected Papers / / edited by Mihaela Pop, Maxime Sermesant, Pierre-Marc Jodoin, Alain Lalande, Xiahai Zhuang, Guang Yang, Alistair Young, Olivier Bernard
Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges : 8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada, September 10-14, 2017, Revised Selected Papers / / edited by Mihaela Pop, Maxime Sermesant, Pierre-Marc Jodoin, Alain Lalande, Xiahai Zhuang, Guang Yang, Alistair Young, Olivier Bernard
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XIII, 260 p. 94 illus.)
Disciplina 611.12
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Computer vision
Artificial intelligence
Computer Vision
Artificial Intelligence
ISBN 9783319755410
3319755412
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- Regular Papers -- Multiview Machine Learning Using an Atlas of Cardiac Cycle Motion -- 1 Introduction -- 2 Materials -- 3 Methods -- 3.1 Motion Atlas Formation -- 3.2 Multiview Classification -- 4 Experiments and Results -- 5 Discussion -- References -- Joint Myocardial Registration and Segmentation of Cardiac BOLD MRI -- 1 Introduction -- 2 Background -- 3 Methods -- 3.1 Dictionary Learning Based Image Segmentation -- 3.2 Graph-Based Joint Optimization -- 3.3 Dictionary Update -- 4 Experimental Results -- 4.1 Data Preparation and Implementation Details -- 4.2 Visual Evaluation -- 4.3 Quantitative Comparison -- 4.4 CAP Dataset -- 5 Conclusion -- References -- Transfer Learning for the Fully Automatic Segmentation of Left Ventricle Myocardium in Porcine Cardiac Cine MR Images -- Abstract -- 1 Introduction -- 2 Method -- 2.1 Data Description -- 2.2 Image Preprocessing -- 2.3 CNN Architecture and Training Setup -- 2.4 Transfer Learning -- 3 Experiments and Results -- 4 Conclusion and Discussions -- References -- Left Atrial Appendage Neck Modeling for Closure Surgery -- 1 Introduction -- 2 LAA Segmentation -- 3 LAA Neck Modeling -- 3.1 Auto-Detection of the Ostium of the LAA -- 3.2 Establishment of the Standard Coordinate System Based on the Ostium Plane -- 3.3 Auto-Building of Circumscribed Cylindrical Model of LAA Neck -- 4 Experiments and Results -- 4.1 Dataset -- 4.2 Ground Truth -- 4.3 Evaluation -- 5 Conclusion -- References -- Detection of Substances in the Left Atrial Appendage by Spatiotemporal Motion Analysis Based on 4D-CT -- 1 Introduction -- 2 Method -- 2.1 Extraction of Optical Flow Fields of Adjacent Phase -- 2.2 The Tracking of Key Voxels in Whole Cardiac Cycle -- 2.3 Hierarchical Clustering of All Trajectory Curves.
2.4 Time-Frequency Analysis of the Track Curve of Critical Lumps - to Realize the Stress and Strain Detection of Lumps -- 3 Experiment and Discussion -- 3.1 Dataset -- 3.2 Evaluation and Results -- 4 Conclusion -- References -- Estimation of Healthy and Fibrotic Tissue Distributions in DE-CMR Incorporating CINE-CMR in an EM Algorithm -- 1 Introduction -- 2 Methods -- 3 Experimental Results -- 4 Conclusions -- References -- Multilevel Non-parametric Groupwise Registration in Cardiac MRI: Application to Explanted Porcine Hearts -- 1 Introduction -- 2 Methods -- 2.1 Data Acquisition -- 2.2 Pairwise Registration of the Anatomical MR Images -- 3 Groupwise Registration -- 4 Results -- 5 Future Work and Conclusions -- References -- ACDC Challenge -- GridNet with Automatic Shape Prior Registration for Automatic MRI Cardiac Segmentation -- 1 Introduction -- 2 Our Method -- 2.1 Shape Prior -- 2.2 Loss -- 2.3 Proposed Network -- 3 Experimental Setup and Results -- 3.1 Dataset, Evaluation Criteria, and Other Methods -- 3.2 Experimental Results -- 4 Conclusion -- References -- A Radiomics Approach to Computer-Aided Diagnosis with Cardiac Cine-MRI -- 1 Introduction -- 2 Method -- 2.1 Data Description -- 2.2 Semi-automatic Segmentation -- 2.3 Radiomics Features for Cardiac Diagnosis -- 2.4 Classification Method -- 2.5 Radiomic Feature Selection -- 3 Results -- 4 Conclusions -- References -- Fast Fully-Automatic Cardiac Segmentation in MRI Using MRF Model Optimization, Substructures Tracking and B-Spline Smoothing -- 1 Introduction -- 2 Automatic Localization of the Heart -- 3 Segmentation of an ED Phase Slice in Between Base and Mid-Ventricle -- 4 Segmentation Based on Tracking the Cardiac Substructures in ED Phase -- 5 Segmentation in the ES Phase -- 6 Left Ventricle Epicardial Boundary Smoothing -- 7 Global Results and First Conclusions -- References.
Automatic Segmentation and Disease Classification Using Cardiac Cine MR Images -- 1 Introduction -- 2 Data -- 3 Methods -- 3.1 Segmentation -- 3.2 Diagnosis -- 4 Experiments and Results -- 4.1 Segmentation Results -- 4.2 Diagnosis Results -- 5 Discussion and Conclusion -- References -- An Exploration of 2D and 3D Deep Learning Techniques for Cardiac MR Image Segmentation -- 1 Introduction -- 2 Method -- 2.1 Pre-Processing -- 2.2 Network Architectures -- 2.3 Optimisation -- 2.4 Post-Processing -- 3 Experiments and Results -- 3.1 Data -- 3.2 Evaluation Measures -- 3.3 Experiment 1: Comparison of Loss Functions -- 3.4 Experiment 2: Comparison of Network Architectures -- 3.5 Discussion and Conclusion -- References -- Automatic Cardiac Disease Assessment on cine-MRI via Time-Series Segmentation and Domain Specific Features -- 1 Introduction -- 2 Methods -- 2.1 Cardiac cine-MRI Dataset -- 2.2 Segmentation -- 2.3 Cardiac Disease Classification -- 3 Results -- 4 Discussion -- References -- 2D-3D Fully Convolutional Neural Networks for Cardiac MR Segmentation -- 1 Introduction -- 2 Method -- 2.1 Network Architecture -- 2.2 Dataset, Preprocessing and Augmentation -- 2.3 Training -- 2.4 Optimization Function -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Densely Connected Fully Convolutional Network for Short-Axis Cardiac Cine MR Image Segmentation and Heart Diagnosis Using Random Forest -- 1 Introduction and Related Work -- 2 Our Method -- 2.1 Data Pre-processing Pipeline -- 2.2 Proposed Network Architecture: Densely Connected Fully Convolutional Network (DFCN) -- 2.3 Loss Function -- 2.4 Post-processing -- 2.5 Cardiac Disease Diagnosis -- 3 Experimental Setup and Results -- 3.1 Dataset and Evaluation Criteria -- 3.2 Experimental Results -- 3.3 Conclusion -- References.
Class-Balanced Deep Neural Network for Automatic Ventricular Structure Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Efficient Semantic Labeling with 3D FCN -- 2.2 Transfer Learning from C3D Model -- 2.3 Promote Training with Deep Supervision -- 2.4 Investigation of Class-Balanced Loss -- 3 Experimental Results -- 4 Conclusions -- References -- Automatic Segmentation of LV and RV in Cardiac MRI -- Abstract -- 1 Introduction -- 2 Methods -- 2.1 Dataset -- 2.2 Preprocessing -- 2.3 Architecture -- 3 Experimental Results -- 3.1 Implemented Details -- 3.2 Results and Quantitative Analysis with Other Methods -- 4 Conclusion and Discussion -- Acknowledgement -- References -- Automatic Multi-Atlas Segmentation of Myocardium with SVF-Net -- 1 Introduction -- 2 Rigid Alignment by Landmarks Detection -- 3 Non-rigid Diffeomorphic Registration with SVF-Net -- 4 Label Fusion Method -- 5 Results and Discussion -- 6 Conclusion -- References -- MM-WHS Challenge -- 3D Convolutional Networks for Fully Automatic Fine-Grained Whole Heart Partition -- 1 Introduction -- 2 Methodology -- 2.1 Dense Semantic Labeling with 3D FCN -- 2.2 Knowledge Transfer from C3D Model -- 2.3 Promote Training with Deep Supervision -- 2.4 Multi-class Balanced Loss Function -- 3 Experimental Results -- 4 Conclusions -- References -- Multi-label Whole Heart Segmentation Using CNNs and Anatomical Label Configurations -- 1 Introduction -- 2 Method -- 3 Experimental Setup -- 4 Results and Discussion -- 5 Conclusion -- References -- Multi-Planar Deep Segmentation Networks for Cardiac Substructures from MRI and CT -- 1 Introduction -- 2 Multi-Object Multi-Planar CNN (MO-MP-CNN) -- 3 Experimental Results -- 4 Discussion and Conclusion -- References -- Local Probabilistic Atlases and a Posteriori Correction for the Segmentation of Heart Images -- 1 Introduction -- 2 Methods.
2.1 Construction of the a Priori Information -- 2.2 Segmentation -- 2.3 A Posteriori Correction -- 3 Experiments -- 4 Results -- 5 Conclusion -- References -- Hybrid Loss Guided Convolutional Networks for Whole Heart Parsing -- 1 Introduction -- 2 Methodology -- 2.1 Intensity Calibration as Preprocessing -- 2.2 Enhance the Training of 3D FCN -- 2.3 Hybrid Loss Guided Class-Balanced Segmentation -- 3 Experimental Results -- 4 Conclusions -- References -- 3D Deeply-Supervised U-Net Based Whole Heart Segmentation -- 1 Introduction -- 2 Method -- 2.1 Data Pre-processing -- 2.2 Network Architecture -- 3 Experiments and Results -- 3.1 Data -- 3.2 Performance on Training Set -- 3.3 Performance on Testing Set -- 4 Discussion and Conclusion -- References -- MRI Whole Heart Segmentation Using Discrete Nonlinear Registration and Fast Non-local Fusion -- 1 Introduction and Related Work -- 2 Discrete Registration -- 3 Non-local Label Fusion -- 4 Multi-label Random Walk Regularisation -- 5 Discussion and Conclusion -- References -- Automatic Whole Heart Segmentation Using Deep Learning and Shape Context -- 1 Introduction -- 2 Methods -- 2.1 2.5D Segmentation Using Orthogonal U-Nets -- 2.2 Shape Context Generation -- 2.3 Shape-Context Guided U-Net -- 2.4 Implementation Details -- 3 Results -- 4 Discussion and Conclusion -- References -- Automatic Whole Heart Segmentation in CT Images Based on Multi-atlas Image Registration -- Abstract -- 1 Introduction -- 2 Methodology -- 2.1 A Three-Step Multi-atlas-Based Whole Heart Segmentation -- 2.2 Multiple Atlas Images -- 3 Experimental Results -- 4 Conclusion -- References -- Author Index.
Record Nr. UNINA-9910349458403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges [[electronic resource] ] : 9th International Workshop, STACOM 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers / / edited by Mihaela Pop, Maxime Sermesant, Jichao Zhao, Shuo Li, Kristin McLeod, Alistair Young, Kawal Rhode, Tommaso Mansi
Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges [[electronic resource] ] : 9th International Workshop, STACOM 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers / / edited by Mihaela Pop, Maxime Sermesant, Jichao Zhao, Shuo Li, Kristin McLeod, Alistair Young, Kawal Rhode, Tommaso Mansi
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XIV, 487 p. 216 illus., 192 illus. in color.)
Disciplina 006.3
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Artificial intelligence
Computer communication systems
Data mining
Image Processing and Computer Vision
Artificial Intelligence
Computer Communication Networks
Data Mining and Knowledge Discovery
ISBN 3-030-12029-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cardiac imaging and image processing -- Machine learning applied to cardiac imaging and image analysis -- Atlas construction -- Statistical modelling of cardiac function across different patient populations -- Cardiac computational physiology -- Model customization -- Atlas based functional analysis -- Ontological schemata for data and results -- Integrated functional and structural analyses -- Pre-clinical and clinical applicability of these methods.
Record Nr. UNISA-996466443503316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges : 9th International Workshop, STACOM 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers / / edited by Mihaela Pop, Maxime Sermesant, Jichao Zhao, Shuo Li, Kristin McLeod, Alistair Young, Kawal Rhode, Tommaso Mansi
Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges : 9th International Workshop, STACOM 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers / / edited by Mihaela Pop, Maxime Sermesant, Jichao Zhao, Shuo Li, Kristin McLeod, Alistair Young, Kawal Rhode, Tommaso Mansi
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XIV, 487 p. 216 illus., 192 illus. in color.)
Disciplina 006.3
616.120757
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Computer vision
Artificial intelligence
Computer networks
Data mining
Computer Vision
Artificial Intelligence
Computer Communication Networks
Data Mining and Knowledge Discovery
ISBN 3-030-12029-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cardiac imaging and image processing -- Machine learning applied to cardiac imaging and image analysis -- Atlas construction -- Statistical modelling of cardiac function across different patient populations -- Cardiac computational physiology -- Model customization -- Atlas based functional analysis -- Ontological schemata for data and results -- Integrated functional and structural analyses -- Pre-clinical and clinical applicability of these methods.
Record Nr. UNINA-9910337573303321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges [[electronic resource] ] : 7th International Workshop, STACOM 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Revised Selected Papers / / edited by Tommaso Mansi, Kristin McLeod, Mihaela Pop, Kawal Rhode, Maxime Sermesant, Alistair Young
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges [[electronic resource] ] : 7th International Workshop, STACOM 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Revised Selected Papers / / edited by Tommaso Mansi, Kristin McLeod, Mihaela Pop, Kawal Rhode, Maxime Sermesant, Alistair Young
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XI, 230 p. 108 illus.)
Disciplina 611.12
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Health informatics
Computer simulation
Mathematical statistics
Pattern recognition
Cardiology
Image Processing and Computer Vision
Health Informatics
Simulation and Modeling
Probability and Statistics in Computer Science
Pattern Recognition
ISBN 3-319-52718-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Function across different patient populations -- Cardiac mapping -- Cardiac computational physiology -- Model customization -- Image-based modelling and image-guided interventional procedures -- Atlas based functional analysis.-Ontological schemata for data and results -- Integrated functional and structural analyses -- Pre-clinical and clinical applicability of the methods described.
Record Nr. UNISA-996465753603316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges : 7th International Workshop, STACOM 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Revised Selected Papers / / edited by Tommaso Mansi, Kristin McLeod, Mihaela Pop, Kawal Rhode, Maxime Sermesant, Alistair Young
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges : 7th International Workshop, STACOM 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Revised Selected Papers / / edited by Tommaso Mansi, Kristin McLeod, Mihaela Pop, Kawal Rhode, Maxime Sermesant, Alistair Young
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XI, 230 p. 108 illus.)
Disciplina 611.12
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Medical informatics
Computer simulation
Mathematical statistics
Pattern perception
Cardiology
Image Processing and Computer Vision
Health Informatics
Simulation and Modeling
Probability and Statistics in Computer Science
Pattern Recognition
ISBN 3-319-52718-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Function across different patient populations -- Cardiac mapping -- Cardiac computational physiology -- Model customization -- Image-based modelling and image-guided interventional procedures -- Atlas based functional analysis.-Ontological schemata for data and results -- Integrated functional and structural analyses -- Pre-clinical and clinical applicability of the methods described.
Record Nr. UNINA-9910483531403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges [[electronic resource] ] : 6th International Workshop, STACOM 2015, Held in Conjunction with MICCAI 2015, Munich, Germany, October 9, 2015, Revised Selected Papers / / edited by Oscar Camara, Tommaso Mansi, Mihaela Pop, Kawal Rhode, Maxime Sermesant, Alistair Young
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges [[electronic resource] ] : 6th International Workshop, STACOM 2015, Held in Conjunction with MICCAI 2015, Munich, Germany, October 9, 2015, Revised Selected Papers / / edited by Oscar Camara, Tommaso Mansi, Mihaela Pop, Kawal Rhode, Maxime Sermesant, Alistair Young
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (XI, 218 p. 91 illus.)
Disciplina 611.12
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Computer simulation
Optical data processing
Health informatics
Mathematical statistics
Pattern recognition
Cardiology
Simulation and Modeling
Image Processing and Computer Vision
Health Informatics
Probability and Statistics in Computer Science
Pattern Recognition
ISBN 3-319-28712-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cardiac image processing -- Atlas construction -- Statistical modeling of cardiac function across different patient populations -- Cardiac mapping -- Cardiac computational physiology -- Model customization -- Image-based modelling and image-guided interventional procedures -- Atlas based functional analysis.-Ontological schemata for data and results -- Integrated functional and structural analysis.
Record Nr. UNISA-996465749003316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui

Data di pubblicazione

Altro...