Lectures on Optimal Transport / / by Luigi Ambrosio, Elia Brué, Daniele Semola
| Lectures on Optimal Transport / / by Luigi Ambrosio, Elia Brué, Daniele Semola |
| Autore | Ambrosio Luigi |
| Edizione | [2nd ed. 2024.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (XI, 260 p. 2 illus., 1 illus. in color.) |
| Disciplina | 515 |
| Collana | La Matematica per il 3+2 |
| Soggetto topico |
Mathematical analysis
Mathematical optimization Calculus of variations Measure theory Mathematics Analysis Calculus of Variations and Optimization Measure and Integration |
| ISBN |
9783031768347
3031768345 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | - 1. Lecture I. Preliminary notions and the Monge problem -- 2. Lecture II. The Kantorovich problem -- 3. Lecture III. The Kantorovich - Rubinstein duality -- 4. Lecture IV. Necessary and sufficient optimality conditions -- 5. Lecture V. Existence of optimal maps and applications -- 6. Lecture VI. A proof of the isoperimetric inequality and stability in Optimal Transport -- 7. Lecture VII. The Monge-Ampére equation and Optimal Transport on Riemannian manifolds -- 8. Lecture VIII. The metric side of Optimal Transport -- 9. Lecture IX. Analysis on metric spaces and the dynamic formulation of Optimal Transport -- 10. Lecture X.Wasserstein geodesics, nonbranching and curvature -- 11. Lecture XI. Gradient flows: an introduction -- 12. Lecture XII. Gradient flows: the Brézis-Komura theorem -- 13. Lecture XIII. Examples of gradient flows in PDEs -- 14. Lecture XIV. Gradient flows: the EDE and EDI formulations -- 15. Lecture XV. Semicontinuity and convexity of energies in the Wasserstein space -- 16. Lecture XVI. The Continuity Equation and the Hopf-Lax semigroup -- 17. Lecture XVII. The Benamou-Brenier formula -- 18. Lecture XVIII. An introduction to Otto’s calculus -- 19. Lecture XIX. Heat flow, Optimal Transport and Ricci curvature. |
| Record Nr. | UNINA-9910919815603321 |
Ambrosio Luigi
|
||
| Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Lectures on optimal transport / / Luigi Ambrosio, Elia Brué, and Daniele Semola
| Lectures on optimal transport / / Luigi Ambrosio, Elia Brué, and Daniele Semola |
| Autore | Ambrosio Luigi |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (250 pages) |
| Disciplina | 519.6 |
| Collana | Unitext |
| Soggetto topico |
Mathematical optimization
Optimització matemàtica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-72162-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Contents -- Lecture 1: Preliminary Notions and the Monge Problem -- 1 Notation and Preliminary Results -- 2 Monge's Formulation of the Optimal Transport Problem -- Lecture 2: The Kantorovich Problem -- 1 Kantorovich's Formulation of the Optimal Transport Problem -- 2 Transport Plans Versus Transport Maps -- 3 Advantages of Kantorovich's Formulation -- 4 Existence of Optimal Plans -- Lecture 3: The Kantorovich-Rubinstein Duality -- 1 Convex Analysis Tools -- 2 Proof of Duality via Fenchel-Rockafellar -- 3 The Theory of c-Duality -- 4 Proof of Duality and Dual Attainment for Bounded and Continuous Cost Functions -- Lecture 4: Necessary and Sufficient Optimality Conditions -- 1 Duality and Necessary/Sufficient Optimality Conditions for Lower Semicontinuous Costs -- 2 Remarks About Necessary and Sufficient Optimality Conditions -- 3 Remarks About c-Cyclical Monotonicity, c-Concavity and c-Transforms for Special Costs -- 4 Cost=distance2 -- 5 Cost=Distance -- 6 Convex Costs on the Real Line -- Lecture 5: Existence of Optimal Maps and Applications -- 1 Existence of Optimal Transport Maps -- 2 A Digression About Monge's Problem -- 3 Applications -- 4 Iterated Monotone Rearrangement -- Lecture 6: A Proof of the Isoperimetric Inequality and Stability in Optimal Transport -- 1 Isoperimetric Inequality -- 2 Stability of Optimal Plans and Maps -- Lecture 7: The Monge-Ampére Equation and Optimal Transport on Riemannian Manifolds -- 1 A General Change of Variables Formula -- 2 The Monge-Ampère Equation -- 3 Optimal Transport on Riemannian Manifolds -- Lecture 8: The Metric Side of Optimal Transport -- 1 The Distance W2 in P2(X) -- 2 Completeness of Square Integrable Probabilities -- 3 Characterization of Convergence in the Space of Square Integrable Probabilities.
Lecture 9: Analysis on Metric Spaces and the Dynamic Formulation of Optimal Transport -- 1 Absolutely Continuous Curves and Their Metric Derivative -- 2 Geodesics and Action -- 3 Dynamic Reformulation of the Optimal Transport Problem -- Lecture 10: Wasserstein Geodesics, Nonbranching and Curvature -- 1 Lower Semicontinuity of the Action A2 -- 2 Compactness Criterion for Curves and Random Curves -- 3 Lifting of Geodesics from X to P2(X) -- Lecture 11: Gradient Flows: An Introduction -- 1 lambda-Convex Functions -- 2 Differentiability of Absolutely Continuous Curves -- 3 Gradient Flows -- Lecture 12: Gradient Flows: The Brézis-Komura Theorem -- 1 Maximal Monotone Operators -- 2 The Implicit Euler Scheme -- 3 Reduction to Initial Conditions with Finite Energy -- 4 Discrete EVI -- Lecture 13: Examples of Gradient Flows in PDEs -- 1 p-Laplace Equation, Heat Equation in Domains, Fokker-Planck Equation -- 2 The Heat Equation in Riemannian Manifolds -- 3 Dual Sobolev Space H-1 and Heat Flow in H-1 -- Lecture 14: Gradient Flows: The EDE and EDI Formulations -- 1 EDE, EDI Solutions and Upper Gradients -- 2 Existence of EDE, EDI Solutions -- 3 Proof of Theorem 14.7 via Variational Interpolation -- Lecture 15: Semicontinuity and Convexity of Energies in the Wasserstein Space -- 1 Semicontinuity of Internal Energies -- 2 Convexity of Internal Energies -- 3 Potential Energy Functional -- 4 Interaction Energy -- 5 Functional Inequalities via Optimal Transport -- Lecture 16: The Continuity Equation and the Hopf-Lax Semigroup -- 1 Continuity Equation and Transport Equation -- 2 Continuity Equation of Geodesics in the Wasserstein Space -- 3 Hopf-Lax Semigroup -- Lecture 17: The Benamou-Brenier Formula -- 1 Benamou-Brenier Formula -- 2 Correspondence Between Absolutely Continuous Curves in the Probabilities and Solutions to the Continuity Equation. Lecture 18: An Introduction to Otto's Calculus -- 1 Otto's Calculus -- 2 Formal Interpretation of Some Evolution Equations as Wasserstein Gradient Flows -- 3 Rigorous Interpretation of the Heat Equation as a Wasserstein Gradient Flow -- 4 More Recent Ideas and Developments -- Lecture 19: Heat Flow, Optimal Transport and Ricci Curvature -- 1 Heat Flow on Riemannian Manifolds -- 2 Heat Flow, Optimal Transport and Ricci Curvature -- References. |
| Record Nr. | UNISA-996466414703316 |
Ambrosio Luigi
|
||
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Lectures on Optimal Transport / / by Luigi Ambrosio, Elia Brué, Daniele Semola
| Lectures on Optimal Transport / / by Luigi Ambrosio, Elia Brué, Daniele Semola |
| Autore | Ambrosio Luigi |
| Edizione | [1st ed. 2021.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 |
| Descrizione fisica | 1 online resource (250 pages) |
| Disciplina | 519.6 |
| Collana | La Matematica per il 3+2 |
| Soggetto topico |
Mathematical analysis
Mathematical optimization Calculus of variations Measure theory Analysis Calculus of Variations and Optimization Measure and Integration |
| ISBN | 3-030-72162-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 Lecture 1: Preliminary notions and the Monge problem -- 2 Lecture 2: The Kantorovich problem -- 3 Lecture 3: The Kantorovich - Rubinstein duality -- 4 Lecture 4: Necessary and sufficient optimality conditions -- 5 Lecture 5: Existence of optimal maps and applications -- 6 Lecture 6: A proof of the Isoperimetric inequality and stability in Optimal Transport -- 7 Lecture 7: The Monge-Ampére equation and Optimal Transport on Riemannian manifolds -- 8 Lecture 8: The metric side of Optimal Transport -- 9 Lecture 9: Analysis on metric spaces and the dynamic formulation of Optimal Transport -- 10 Lecture 10: Wasserstein geodesics, nonbranching and curvature -- 11 Lecture 11: Gradient flows: an introduction -- 12 Lecture 12: Gradient flows: the Brézis-Komura theorem -- 13 Lecture 13: Examples of gradient flows in PDEs -- 14 Lecture 14: Gradient flows: the EDE and EDI formulations -- 15 Lecture 15: Semicontinuity and convexity of energies in the Wasserstein space -- 16 Lecture 16: The Continuity Equation and the Hopf-Lax semigroup -- 17 Lecture 17: The Benamou-Brenier formula -- 18 Lecture 18: An introduction to Otto’s calculus -- 19 Lecture 19: Heat flow, Optimal Transport and Ricci curvature. |
| Record Nr. | UNINA-9910495195503321 |
Ambrosio Luigi
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||