Vai al contenuto principale della pagina

Metrical and Ergodic Theory of Continued Fraction Algorithms / / by Gabriela Ileana Sebe, Dan Lascu



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Sebe Gabriela Ileana Visualizza persona
Titolo: Metrical and Ergodic Theory of Continued Fraction Algorithms / / by Gabriela Ileana Sebe, Dan Lascu Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2025
Edizione: 1st ed. 2025.
Descrizione fisica: 1 online resource (XII, 140 p. 4 illus., 3 illus. in color.)
Disciplina: 515.39
Soggetto topico: Dynamics
Measure theory
Stochastic processes
Markov processes
Number theory
Dynamical Systems
Measure and Integration
Stochastic Processes
Markov Process
Number Theory
Persona (resp. second.): LascuDan
Nota di contenuto: - 1. Introduction -- 2. θ-Continued Fraction Expansions -- 3. N-Continued Fractions -- 4. Generalized Rényi Continued Fractions -- 5. Comparing the Efficiency of Different Continued Fraction Algorithms.
Sommario/riassunto: This monograph presents the work of the authors in metrical theory of continued fractions in the last two decades. The monograph cuts a particular path through this extensive theory and describes the theory in its current form for three families of continued fractions, namely, θ-continued fractions, N-continued fractions, and generalized Rényi continued fractions. The book systematically lays out the required preliminaries, making the book easy to read. This monograph provides a solid introduction into the theory of continued fractions. The book is intended for researchers in metrical theory, as well as advanced graduate students and mathematicians interested in this field.
Titolo autorizzato: Metrical and Ergodic Theory of Continued Fraction Algorithms  Visualizza cluster
ISBN: 3-031-86634-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910999673203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Frontiers in Mathematics, . 1660-8054