A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem : heuristics and rigorous verification on a model / / Amadeu Delshams, Rafael de la Llave, Tere M. Seara |
Autore | Delshams Amadeu |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2006 |
Descrizione fisica | 1 online resource (158 p.) |
Disciplina |
510 s
515/.39 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Nonholonomic dynamical systems
Mechanics Differential equations - Qualitative theory |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0445-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Heuristic discussion of the mechanism""; ""2.1. Integrable systems, resonances, secondary tori""; ""2.2. Heuristic description of the mechanism""; ""Chapter 3. A simple model""; ""Chapter 4. Statement of rigorous results""; ""Chapter 5. Notation and definitions, resonances""; ""Chapter 6. Geometric features of the unperturbed problem""; ""Chapter 7. Persistence of the normally hyperbolic invariant manifold and its stable and unstable manifolds""; ""7.1. Explicit calculations of the perturbed invariant manifold""
""8.5.2. Preliminary analysis of resonances of order one or two""""8.5.3. Primary and secondary tori near the first and second order resonances""; ""8.5.4. Proof of Theorem 8.30 and Corollary 8.31""; ""8.5.5. Existence of stable and unstable manifolds of periodic orbits""; ""Chapter 9. The scattering map""; ""9.1. Some generalities about the scattering map""; ""9.2. The scattering map in our model: definition and computation""; ""Chapter 10. Existence of transition chains""; ""10.1. Transition chains""; ""10.2. The scattering map and the transversality of heteroclinic intersections"" ""10.2.1. The non-resonant region and resonances of order 3 and higher""""10.2.2. Resonances of first order""; ""10.2.3. Resonances of order 2""; ""10.3. Existence of transition chains to objects of different topological types""; ""Chapter 11. Orbits shadowing the transition chains and proof of theorem 4.1""; ""Chapter 12. Conclusions and remarks""; ""12.1. The role of secondary tori and the speed of diffusion""; ""12.2. Comparison with [DLS00]""; ""12.3. Heuristics on the genericity properties of the hypothesis and the phenomena""; ""12.4. The hypothesis of polynomial perturbations"" ""12.5. Involving other objects""""12.6. Variational methods""; ""12.7. Diffusion times""; ""Chapter 13. An example""; ""Acknowledgments""; ""Bibliography"" |
Record Nr. | UNINA-9910480091103321 |
Delshams Amadeu | ||
Providence, Rhode Island : , : American Mathematical Society, , 2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem : heuristics and rigorous verification on a model / / Amadeu Delshams, Rafael de la Llave, Tere M. Seara |
Autore | Delshams Amadeu |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2006 |
Descrizione fisica | 1 online resource (158 p.) |
Disciplina |
510 s
515/.39 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Nonholonomic dynamical systems
Mechanics Differential equations - Qualitative theory |
ISBN | 1-4704-0445-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Heuristic discussion of the mechanism""; ""2.1. Integrable systems, resonances, secondary tori""; ""2.2. Heuristic description of the mechanism""; ""Chapter 3. A simple model""; ""Chapter 4. Statement of rigorous results""; ""Chapter 5. Notation and definitions, resonances""; ""Chapter 6. Geometric features of the unperturbed problem""; ""Chapter 7. Persistence of the normally hyperbolic invariant manifold and its stable and unstable manifolds""; ""7.1. Explicit calculations of the perturbed invariant manifold""
""8.5.2. Preliminary analysis of resonances of order one or two""""8.5.3. Primary and secondary tori near the first and second order resonances""; ""8.5.4. Proof of Theorem 8.30 and Corollary 8.31""; ""8.5.5. Existence of stable and unstable manifolds of periodic orbits""; ""Chapter 9. The scattering map""; ""9.1. Some generalities about the scattering map""; ""9.2. The scattering map in our model: definition and computation""; ""Chapter 10. Existence of transition chains""; ""10.1. Transition chains""; ""10.2. The scattering map and the transversality of heteroclinic intersections"" ""10.2.1. The non-resonant region and resonances of order 3 and higher""""10.2.2. Resonances of first order""; ""10.2.3. Resonances of order 2""; ""10.3. Existence of transition chains to objects of different topological types""; ""Chapter 11. Orbits shadowing the transition chains and proof of theorem 4.1""; ""Chapter 12. Conclusions and remarks""; ""12.1. The role of secondary tori and the speed of diffusion""; ""12.2. Comparison with [DLS00]""; ""12.3. Heuristics on the genericity properties of the hypothesis and the phenomena""; ""12.4. The hypothesis of polynomial perturbations"" ""12.5. Involving other objects""""12.6. Variational methods""; ""12.7. Diffusion times""; ""Chapter 13. An example""; ""Acknowledgments""; ""Bibliography"" |
Record Nr. | UNINA-9910788741103321 |
Delshams Amadeu | ||
Providence, Rhode Island : , : American Mathematical Society, , 2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem : heuristics and rigorous verification on a model / / Amadeu Delshams, Rafael de la Llave, Tere M. Seara |
Autore | Delshams Amadeu |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2006 |
Descrizione fisica | 1 online resource (158 p.) |
Disciplina |
510 s
515/.39 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Nonholonomic dynamical systems
Mechanics Differential equations - Qualitative theory |
ISBN | 1-4704-0445-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Heuristic discussion of the mechanism""; ""2.1. Integrable systems, resonances, secondary tori""; ""2.2. Heuristic description of the mechanism""; ""Chapter 3. A simple model""; ""Chapter 4. Statement of rigorous results""; ""Chapter 5. Notation and definitions, resonances""; ""Chapter 6. Geometric features of the unperturbed problem""; ""Chapter 7. Persistence of the normally hyperbolic invariant manifold and its stable and unstable manifolds""; ""7.1. Explicit calculations of the perturbed invariant manifold""
""8.5.2. Preliminary analysis of resonances of order one or two""""8.5.3. Primary and secondary tori near the first and second order resonances""; ""8.5.4. Proof of Theorem 8.30 and Corollary 8.31""; ""8.5.5. Existence of stable and unstable manifolds of periodic orbits""; ""Chapter 9. The scattering map""; ""9.1. Some generalities about the scattering map""; ""9.2. The scattering map in our model: definition and computation""; ""Chapter 10. Existence of transition chains""; ""10.1. Transition chains""; ""10.2. The scattering map and the transversality of heteroclinic intersections"" ""10.2.1. The non-resonant region and resonances of order 3 and higher""""10.2.2. Resonances of first order""; ""10.2.3. Resonances of order 2""; ""10.3. Existence of transition chains to objects of different topological types""; ""Chapter 11. Orbits shadowing the transition chains and proof of theorem 4.1""; ""Chapter 12. Conclusions and remarks""; ""12.1. The role of secondary tori and the speed of diffusion""; ""12.2. Comparison with [DLS00]""; ""12.3. Heuristics on the genericity properties of the hypothesis and the phenomena""; ""12.4. The hypothesis of polynomial perturbations"" ""12.5. Involving other objects""""12.6. Variational methods""; ""12.7. Diffusion times""; ""Chapter 13. An example""; ""Acknowledgments""; ""Bibliography"" |
Record Nr. | UNINA-9910827755503321 |
Delshams Amadeu | ||
Providence, Rhode Island : , : American Mathematical Society, , 2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|