Handbook of Geometry and Topology of Singularities IV / / edited by José Luis Cisneros-Molina, Lê Dũng Tráng, José Seade |
Autore | Cisneros-Molina José Luis |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (622 pages) |
Disciplina | 516.35 |
Altri autori (Persone) |
Dũng TrángLê
SeadeJosé |
Soggetto topico |
Topology
Algebraic geometry Mathematical analysis Algebraic Geometry Analysis Singularitats (Matemàtica) Geometria algebraica Grups topològics |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-31925-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 Lê Dũng Tráng and Bernard Teissier, Limits of tangents, Whitney stratifications and a Plücker type formula -- 2 Anne Frühbis-Krüger and Matthias Zach, Determinantal singularities -- 3 Shihoko Ishii, Singularities, the space of arcs and applications to birational geometry -- 4 Hussein Mourtada, Jet schemes and their applications in singularities, toric resolutions and integer partitions -- 5 Wolfgang Ebeling and Sabir M. Gusein-Zade, Indices of vector fields and 1-forms -- 6 Shoji Yokura, Motivic Hirzebruch class and related topics -- 7 Guillaume Valette, Regular vectors and bi-Lipschitz trivial stratifications in o-minimal structures -- 8 Lev Birbrair and Andrei Gabrielov, Lipschitz Geometry of Real Semialgebraic Surfaces -- 9 Alexandre Fernandes and José Edson Sampaio, Bi-Lipschitz invariance of the multiplicity -- 10 Lorenzo Fantini and Anne Pichon, On Lipschitz Normally Embedded singularities -- 11 Ana Bravo and Santiago Encinas, Hilbert-Samuel multiplicity and finite projections -- 12 Francisco J. Castro-Jiménez, David Mond and Luis Narváez-Macarro, Logarithmic Comparison Theorems. |
Record Nr. | UNINA-9910747591903321 |
Cisneros-Molina José Luis | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Handbook of Geometry and Topology of Singularities V |
Autore | Cano Felipe |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing AG, , 2024 |
Descrizione fisica | 1 online resource (531 pages) |
Disciplina | 516.35 |
Altri autori (Persone) |
Cisneros-MolinaJosé Luis
Dũng TrángLê SeadeJosé |
ISBN | 3-031-52481-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword: Theory of Complex Foliations in Moscow and Outside -- Preface -- Contents -- Contributors -- 1 Holomorphic Foliations: Singularities and Local Geometric Aspects -- 1.1 Introduction -- 1.2 The Notion of Holomorphic Foliation -- 1.2.1 Motivation -- 1.2.2 Definition of Holomorphic Foliation -- 1.2.3 Other Definitions of Foliation -- 1.2.4 Frobenius Theorem -- 1.2.5 Examples of Holomorphic Foliations -- 1.2.6 Holonomy -- 1.2.7 The Identity Principle for Holomorphic Foliations -- 1.3 Holomorphic Foliations with Singularities -- 1.3.1 Linear Vector Fields on the Plane -- 1.3.2 One-Dimensional Foliations with Isolated Singularities -- 1.3.3 Differential Forms and Vector Fields -- 1.3.4 Codimension One Foliations with Singularities -- 1.3.5 Analytic Leaves -- 1.3.6 Two Extension Lemmas for Holomorphic Foliations -- 1.3.7 Kupka Singularities and Simple Singularities -- 1.4 Reduction of Singularities: The Blow-Up Method -- 1.4.1 Germs of Singularities in Dimension Two -- 1.4.2 Nondegenerate Singularities -- 1.4.3 The Blow-Up Method and Resolution of Curves -- 1.4.4 Separatrices: Dicricity and Existence -- 1.4.5 Seidenberg's Theorem -- 1.4.6 Irreducible Singularities -- 1.4.7 Holonomy and Analytic Classification -- 1.5 Holomorphic First Integrals: Theorem of Mattei-Moussu -- 1.5.1 Mattei-Moussu Theorem -- 1.5.2 Groups of Germs of Holomorphic Diffeomorphisms -- 1.5.3 Irreducible Singularities -- 1.5.4 The Case of a Single Blow-Up -- 1.5.5 The General Case -- 1.6 Holomorphic Foliations Given by Closed 1-Forms -- 1.6.1 Foliations Given by Closed Holomorphic 1-Forms -- 1.6.2 Foliations Given by Closed Meromorphic 1-Forms -- 1.6.3 Holonomy of Foliations Defined by Closed Meromorphic 1-Forms -- 1.6.4 The Integration Lemma -- 1.7 Linearization of Foliations -- 1.7.1 Virtual Holonomy Groups -- 1.7.2 Abelian Groups and Linearization.
1.7.3 Construction of Closed Meromorphic Forms -- 1.7.4 Proof of the Linearization Theorem -- References -- 2 Persistence, Uniformizanion and Holonomy -- 2.1 Introduction -- 2.1.1 Limit and Identical Complex Cycles: Holonomy Map -- 2.1.2 Persistence Property -- 2.1.3 Plan of the Paper -- 2.2 Simultaneous Uniformization Problem -- 2.2.1 Manifold of Universal Covers Over the Leaves -- 2.2.2 What Is Simultaneous Uniformization? -- 2.2.3 Existence and Non-Existence of Simultaneous Uniformization -- 2.3 Conditionary Persistence Theorem for Identical Cycle -- 2.3.1 A Conditionary Persistence Theorem -- 2.3.2 Persistence Domain for an Identical Cycle -- 2.3.3 Tameness on Disks -- 2.3.4 Some Auxiliary Results -- 2.3.5 Isomorphism of Canonical Skew Cylinders -- 2.3.6 Persistence of Identical Cycles -- 2.4 Destruction of Identical Cycle for Analytic Foliations of a Closed Two-Dimensional Manifold in C5 -- 2.5 Persistence of Complex Limit Cycles -- 2.5.1 Persistence Domain of Complex Limit Cycles -- 2.5.2 Statement of the Persistence Theorem -- 2.5.3 Boundary Leaves -- 2.5.4 The Induced Cylinder and Its Deck Transformation -- 2.5.5 Geometric Interpretation of the Map Fb -- 2.6 Unifomizability: Pro e Contra -- 2.6.1 Elementary Example -- 2.6.2 Main Example -- 2.6.3 Non-Uniformizable Algebraic Foliations -- 2.6.4 Uniformization Conjectures -- 2.6.5 Algebraic Families and Simultaneous Uniformization -- 2.7 Non-Extendable Holonomy Map -- 2.7.1 Limit Points of a Contracting Semigroup as Singular Points of Holonomy -- 2.7.2 A Linear Non-Homogeneous Equation -- 2.7.3 A Non-Conditional Persistence Theorem -- References -- 3 Holomorphic Foliations and Vector Fields with Degenerated Singularity in (C2,0) -- 3.1 Local Holomorphic Vector Fields and Foliations with Degenerated Singular Point in (C2, 0) -- 3.1.1 Introduction -- 3.2 Basic Results -- 3.2.1 Blow-Up of (C2,0). 3.2.2 Blow-Up of Germs of Vector Fields in Vn+1 -- 3.3 Rigidity Theorems for Generic Non-Dicritical Foliations and Vector Fields in (C2,0) -- 3.3.1 Rigidity for Foliations of Generic Non-Dicritical Germs of Vector Fields -- 3.3.2 Rigidity for Non-Dicritical Germs of Vector Fields -- 3.4 Rigidity Theorems for Generic Dicritical Foliations and Vector Fields in (C2,0) -- 3.4.1 Rigidity for Foliations Defined by Generic Dicritical Germs of Vector Fields -- 3.4.2 Rigidity for Generic Dicritical Germs of Vector Fields -- 3.5 Formal Normal Forms for Generic Vector Fields and Foliations with Degenerate Singularity in (C2,0) -- 3.5.1 Formal Normal Forms for Generic Holomorphic Dicritical Foliations and Vector Fields in (C2,0) -- 3.5.2 Formal Normal Forms for Generic Holomorphic Non-Dicritical Foliations in (C2,0) -- 3.6 Thom's Invariants for Generic Non-Dicritical and Dicritical Foliations in (C2,0) -- 3.6.1 Thom's Invariants for Generic Holomorphic Non-Dicritical Foliations in (C2,0) -- 3.6.2 Realization Theorem: Independence of the Invariants vc and [Gv] -- 3.6.3 Thom's Invariants for Generic Holomorphic Dicritical Foliations in (C2,0) -- 3.7 Analytic Normal Forms of Germs of Foliations with Degenerated Singularity -- 3.7.1 Formal and Analytic Normal Forms of Germs of Holomorphic Non-Dicritical Foliations -- 3.7.2 Analytic Normal Forms of Germs of Generic Holomorphic Dicritical Foliations -- 3.8 Geometric Interpretation of Thom's Parametric Invariants -- References -- 4 Topology of Singular Foliation Germs in C2 -- 4.1 Introduction -- 4.2 Separatrices and Separators -- 4.2.1 Graph Decomposition of the Complement of a Germ of Curve -- 4.2.2 Separatrices -- 4.2.3 Separators and Dynamical Decomposition -- 4.3 Incompressibility of Leaves -- 4.3.1 Foliated Connectedness and a Foliated Van Kampen Theorem -- 4.3.2 Construction of Foliated Blocks -- 4.4 Examples. 4.4.1 Dicritical Cuspidal Singularity -- 4.4.1.1 Fundamental Group of the Complement of S -- 4.4.1.2 Compressible Leaves -- 4.4.1.3 Appropiate Curve -- 4.4.2 Foliations Which Are Not Generalized Curves -- 4.5 Monodromy of Singular Foliations -- 4.5.1 Ends of Leaves Space of Reduced Foliations -- 4.5.1.1 Poincaré Type Singularity λ R -- 4.5.1.2 Non-Linearizable Resonant Saddles -- 4.5.1.3 Real Saddles λR< -- 0 -- 4.5.1.4 Non-Reduced Logarithmic Singularities -- 4.5.2 Complex Structure on Leaf Spaces -- 4.5.3 Extended Holonomy Along Geometric Blocks of the Foliation -- 4.5.4 Monodromy Representation of a Singular Foliation -- 4.5.5 Monodromy vs Holonomy Conjugacies -- 4.5.6 Classification Theorem -- 4.6 Topological Invariance of Camacho-Sad Indices -- 4.6.1 Camacho-Sad Index -- 4.6.2 Different types of Dynamical Components -- 4.6.3 Small Dynamical Components -- 4.6.4 Big Dynamical Components -- 4.6.5 Peripheral Structure and Index Invariance Theorem -- 4.7 Excellence Theorem and Topological Moduli Space -- 4.7.1 Excellence Theorem -- 4.7.2 Classification Problem: Complete Families and Moduli Space -- References -- 5 Jacobian and Polar Curves of Singular Foliations -- 5.1 Introduction -- 5.2 Generalized Curve Foliations and Logarithmic Models -- 5.2.1 Logarithmic Models -- 5.2.2 Camacho-Sad Index Relative to Singular Separatrices -- 5.3 Polar and Jacobian Intersection Multiplicities -- 5.4 Equisingularity Data of a Plane Curve -- 5.4.1 Equisingularity Data of an Irreducible Curve -- 5.4.2 Equisingularity Data of a Curve with Several Branches -- 5.4.3 Ramification -- 5.5 Topological Properties of Polar Curves of Foliations -- 5.5.1 The Case of Non-Singular Separatrices -- 5.5.2 General Case -- 5.6 Topological Properties of Jacobian Curves of Foliations -- 5.6.1 The Case of Non-Singular Separatrices -- 5.6.2 Jacobian Curve: General Case. 5.7 Analytic Invariants of Irreducible Plane Curves -- References -- 6 Rolle Models in the Real and Complex World -- 6.1 Rolle Lemma, Virgin Flavor -- 6.1.1 First Year Calculus Revisited -- 6.1.2 Rolle Inequality and Descartes Rule of Signs -- 6.1.3 Main Building Block of Elementary Fewnomial Theory -- 6.2 Rolle Theorem and Real ODE's -- 6.2.1 De la Vallée Poussin Theorem and Higher Order Equations -- 6.2.2 Real Meandering Theorem -- 6.2.3 Maximal Tangency Order and the Gabrielov-Khovanskii Theorem -- 6.2.4 Meandering of Curves in the Euclidean Space -- 6.2.4.1 Rolle Theorem in Rn -- 6.2.5 Voorhoeve Index -- 6.2.5.1 Integral Frenet Curvatures and Spatial Meandering -- 6.2.5.2 Non-Oscillating Curves in Rn -- 6.2.6 Spatial Curves vs. Linear Ordinary Differential Equations -- 6.3 Counting Complex Roots -- 6.3.1 Kim Theorem -- 6.3.2 Jensen Inequality -- 6.3.3 Bernstein Index -- 6.3.3.1 On the Order of Quantifiers: How to Understand the Inequalities Below -- 6.3.3.2 Definition of the Bernstein Index -- 6.3.4 Variation of Argument of Solutions of Complex-Valued Linear Equations -- 6.3.5 Rolle and Triangle Inequalities for the Bernstein Index -- 6.3.5.1 Application to Pseudopolynomials -- 6.3.6 Bernstein Index for Power Series -- 6.3.7 Singular Points and Rolle Theory for Difference Operators -- 6.3.7.1 Fuchsian Singularities -- 6.3.7.2 Argument Principle for Unbounded Domains: Petrov Difference Operators and the Associated Rolle Theory -- 6.3.7.3 Zeros Near Fuchsian Singularities -- 6.3.8 Pseudo-Abelian Integrals -- 6.4 Many (Complex) Dimensions -- 6.4.1 Infinitesimal Version: Multiplicity Counting -- 6.4.1.1 Multiplicity of Maps in One Variable -- 6.4.1.2 Noetherian Multiplicities: The Isolated Case -- 6.4.1.3 Multiplicity Operators in the Multidimensional Case -- 6.4.1.4 Lower Bounds -- 6.4.1.5 Rolle Inequality for the Multiplicity Operators. 6.4.1.6 Application to Noetherian Functions. |
Record Nr. | UNINA-9910865271703321 |
Cano Felipe | ||
Cham : , : Springer International Publishing AG, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Handbook of Geometry and Topology of Singularities VI: Foliations / / edited by Felipe Cano, José Luis Cisneros-Molina, Lê Dũng Tráng, José Seade |
Autore | Cano Felipe |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (500 pages) |
Disciplina | 516.35 |
Altri autori (Persone) |
Cisneros-MolinaJosé Luis
Dũng TrángLê SeadeJosé |
Soggetto topico |
Algebraic geometry
Geometry, Differential Topological groups Lie groups Functions of complex variables Algebraic Geometry Differential Geometry Topological Groups and Lie Groups Several Complex Variables and Analytic Spaces |
ISBN | 3-031-54172-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 Adolfo Guillot, On the singularities of complete holomorphic vector fields in dimension two -- 2 Julio Rebelo and Helena Reis, Singularities of holomorphic vector fields in dimensions ≥ 3: results and problems -- 3 Alcides Lins Neto, Codimension one holomorphic Foliations -- 4 Maurıcio Correa, Analytic varieties invariant by holomorphic foliations and Pfaff systems -- 5 Felipe Cano and Beatriz Molina-Samper, Local Invariant Hypersurfaces for Singular Foliations -- 6 Isao Nakai, From the perspective of nonsolvable dynamics on (C, 0): Basics and Applications -- 7 Javier Ribon, Description of the Zariski-closure of a group of formal diffeomorphisms -- 8 Frank Loray, The Riemann-Hilbert correspondence for rank 2 meromorphic connections on curves -- 9 Emmanuel Paul, Jean-Pierre Ramis, Dynamics of the fifth Painlevé foliation -- 10 Jean-Pierre Ramis, Epilogue: Stokes phenomena. Dynamics, Classification Problems and Avatars. |
Record Nr. | UNINA-9910866585403321 |
Cano Felipe | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Vector fields on Singular Varieties [[electronic resource] /] / by Jean-Paul Brasselet, José Seade, Tatsuo Suwa |
Autore | Brasselet Jean-Paul |
Edizione | [1st ed. 2009.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009 |
Descrizione fisica | 1 online resource (XX, 232 p.) |
Disciplina | 515.94 |
Collana | Lecture Notes in Mathematics |
Soggetto topico |
Functions of complex variables
Dynamics Ergodic theory Manifolds (Mathematics) Complex manifolds Global analysis (Mathematics) Algebraic geometry Several Complex Variables and Analytic Spaces Dynamical Systems and Ergodic Theory Manifolds and Cell Complexes (incl. Diff.Topology) Global Analysis and Analysis on Manifolds Algebraic Geometry |
ISBN | 3-642-05205-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | The Case of Manifolds -- The Schwartz Index -- The GSV Index -- Indices of Vector Fields on Real Analytic Varieties -- The Virtual Index -- The Case of Holomorphic Vector Fields -- The Homological Index and Algebraic Formulas -- The Local Euler Obstruction -- Indices for 1-Forms -- The Schwartz Classes -- The Virtual Classes -- Milnor Number and Milnor Classes -- Characteristic Classes of Coherent Sheaves on Singular Varieties. |
Record Nr. | UNISA-996466494003316 |
Brasselet Jean-Paul | ||
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|