top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in battery technologies for electric vehicles / / edited by Bruno Scrosati, Jürgen Garche and Werner Tillmetz ; contributors, C. Arbizzani [and thirty-eight others]
Advances in battery technologies for electric vehicles / / edited by Bruno Scrosati, Jürgen Garche and Werner Tillmetz ; contributors, C. Arbizzani [and thirty-eight others]
Edizione [First edition.]
Pubbl/distr/stampa Amsterdam, [Netherlands] : , : Woodhead Publishing, , 2015
Descrizione fisica 1 online resource (547 p.)
Disciplina 629.2293
Collana Woodhead Publishing Series in Energy
Soggetto topico Electric vehicles - Batteries
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Advances in Battery Technologies for Electric Vehicles; Copyright ; Contents; List of contributors; Woodhead Publishing Series in Energy; Part One: Introduction ; Chapter 1: Introduction to hybrid electric vehicles, battery electric vehicles, and off-road electric vehicles; 1.1 . Electric mobility: mobility of the future; 1.1.1 . The importance of electric mobility to overcome future challenges; 1.1.2 . Existing technological fundamentals and potential development paths; 1.2 . Overview of different electric propulsion systems; 1.2.1 . Parallel hybrid or power-split hybrid
1.2.2 . Plug-in hybrid vehicle1.2.3 . Range extended electric vehicle; 1.2.4 . Battery electric vehicle; 1.2.5 . Fuel cell vehicle; 1.3 . Advantages and disadvantages of electric vehicles; 1.4 . Applications in the field of electric road and off-road vehicles; 1.5 . Conclusion; References; Chapter 2: Carbon dioxide and consumption reduction through electric vehicles; 2.1 . Introduction; 2.1.1 . Energy consumption and CO 2 emissions of transport in Europe; 2.1.2 . Electric drivetrain concepts and their technical characteristics; 2.1.3 . Methodology of vehicle comparisons
2.2 . Energy consumption and CO 2 emissions of vehicle production2.3 . Energy consumption of electric vehicles; 2.4 . Life-cycle energy consumption and CO 2 emissions compared; 2.5 . Potential interactions of electric vehicles with power generation: a case study from Germany; 2.5.1 . Case study Germany: additional electricity demand and impacts on the power plant structure; 2.5.2 . Impact of electric mobility on the operation of the power plant structure; 2.6 . Outlook; References; Chapter 3: The market for battery electric vehicles; 3.1 . Introduction
3.1.1 . The early years of electric vehicles3.1.2 . The nirvana of electric vehicles; 3.1.3 . The "comeback of the electric vehicle"?; 3.2 . Current market situation; 3.3 . Market forces and barriers; 3.3.1 . Climate change; 3.3.2 . Energy resources-peak oil; 3.3.3 . Urbanization; 3.3.4 . Range of models supply; 3.3.5 . Economic and practical barriers: customer requirements; 3.3.6 . Infrastructure and standards; 3.4 . Market potentials; 3.4.1 . Political targets pave the way; 3.4.2 . Future market segments; 3.5 . Economic impacts; 3.5.1 . Chances and risks for the automotive industry
3.5.2 . Influences on the job structure3.5.3 . Country specifics and competitive positions; References; Chapter 4: Battery parameters for hybrid electric vehicles; 4.1 . Introduction; 4.2 . Battery parameters for HEV applications; 4.3 . Overview of lithium-ion batteries and supercapacitors for use in HEVs; 4.4 . Limits to and potential future developments of lithium-ion batteries and supercapacitors; 4.5 . On road transportation in the future; References; Part Two: Types of battery for electric vehicles
Chapter 5: Lead-acid batteries for hybrid electric vehicles and battery electric vehicles
Record Nr. UNINA-9910296962003321
Amsterdam, [Netherlands] : , : Woodhead Publishing, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Lithium batteries [[electronic resource] ] : advanced technologies and applications / / edited by Bruno Scrosati ... [et al.]
Lithium batteries [[electronic resource] ] : advanced technologies and applications / / edited by Bruno Scrosati ... [et al.]
Pubbl/distr/stampa Hoboken, NJ, : John Wiley & Sons, Inc., c2013
Descrizione fisica 1 online resource (xi, 374 pages)
Disciplina 621.31/2424
Altri autori (Persone) ScrosatiBruno
Collana The ECS Series of Texts and Monographs
Soggetto topico Lithium cells
Electric batteries
ISBN 1-5231-1086-4
1-118-61551-4
1-118-61539-5
1-118-61541-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto LITHIUM BATTERIES; CONTENTS; CONTRIBUTORS; PREFACE; CHAPTER 1 ELECTROCHEMICAL CELLS: BASICS; 1 ELECTROCHEMICAL CELLS AND ION TRANSPORT; 2 CHEMICAL AND ELECTROCHEMICAL POTENTIAL; 2.1 Temperature Dependence of the Reversible Cell Voltage; 2.2 Chemical Potential; 2.3 Electrochemical Potential; 2.4 The Nernst Equation; 2.5 Electrochemical Double Layer; 3 OHMIC LOSSES AND ELECTRODE KINETICS; 3.1 Ohmic Potential Losses; 3.2 Kinetic Overpotential; 3.3 The Butler-Volmer Equation; 4 CONCLUDING REMARKS; BIBLIOGRAPHY; CHAPTER 2 LITHIUM BATTERIES: FROM EARLY STAGES TO THE FUTURE; 1 INTRODUCTION
2 ADVENT OF THE RECHARGEABLE LITHIUM BATTERY 3 A LOOK INTO THE FUTURE; 4 BEYOND THE HORIZON; REFERENCES; CHAPTER 3 ADDITIVES IN ORGANIC ELECTROLYTES FOR LITHIUM BATTERIES; 1 INTRODUCTION; 1.1 Shortcomings of Standard Liquid or Gel Electrolytes; 1.2 The Advent of Additives; 1.3 Additive Criteria and Development Process; 2 LiPF6 SALT STABILIZERS; 2.1 Hindering and Deactivating PF5; 2.2 Impurity Scavenging; 2.3 Anion Receptors; 3 OVERCHARGE PROTECTORS; 3.1 Redox Shuttles; 3.2 Shutdown Additives; 4 FLAME RETARDANTS; 4.1 Classical Phosphates; 4.2 Cyclic Phosphazenes; 4.3 Ionic Liquids as Additives
5 SYNERGY EFFECTS BETWEEN ELECTROLYTE ADDITIVES 5.1 Double-Functionality Additives; 5.2 Synergies of Single-Functionality Additives; 6 CONCLUSIONS; REFERENCES; CHAPTER 4 ELECTROLYTES FOR LITHIUM-ION BATTERIES WITH HIGH-VOLTAGE CATHODES; 1 INTRODUCTION; 2 OXIDATION REACTIONS OF THE ELECTROLYTE WITH TRADITIONAL METAL OXIDE CATHODE MATERIALS; 3 THERMAL REACTIONS OF THE ELECTROLYTE WITH THE SURFACE OF METAL OXIDE CATHODES; 4 FORMULATION OF ELECTROLYTES FOR HIGH-VOLTAGE MATERIALS; 4.1 Chemistry of Cathodes at High Voltage
4.2 Novel Organic Solvents with Greater Oxidative Stability: Sulfones, Nitriles, and Fluorinated Solvents 4.3 Novel Additives for Cathode Surface Passivation; 5 SUMMARY; REFERENCES; CHAPTER 5 CORE-SHELL STRUCTURE CATHODE MATERIALS FOR RECHARGEABLE LITHIUM BATTERIES; 1 INTRODUCTION; 2 LAYER-STRUCTURED CORE-SHELL; 3 LAYER-STRUCTURED CORE-SHELL PARTICLES WITH A CONCENTRATION GRADIENT; 4 SPHERICAL CORE-SHELL Li[(Li0.05Mn0.95)0.8(Ni0.25Mn0.75)0.2]2O4 SPINEL; 5 CONCLUSIONS; Acknowledgments; REFERENCES; CHAPTER 6 PROBLEMS AND EXPECTANCY IN LITHIUM BATTERY TECHNOLOGIES; 1 INTRODUCTION
2 IMPORTANCE OF ENERGY STORAGE 3 DEVELOPMENT OF LITHIUM BATTERIES; 3.1 Lithium Batteries for Electric Vehicles; 3.2 Lithium Batteries for Mobile Applications; 4 DEVELOPMENT OF MATERIALS FOR RECHARGEABLE LITHIUM BATTERIES; 4.1 Safety; 4.2 Lifetime; 4.3 High Energy Density; 4.4 Cathode Materials; 4.5 Anode Materials; 4.6 Electrolytes; 5 PRODUCTION OF ELECTRODES FOR LITHIUM BATTERIES; 5.1 Energy and Power Density; 5.2 Particle Nature; 5.3 Composite Electrodes; 5.4 Current Collectors; 6 SUMMARY; REFERENCES; CHAPTER 7 FLUORINE-BASED POLYANIONIC COMPOUNDS FOR HIGH-VOLTAGE ELECTRODE MATERIALS
1 INTRODUCTION
Record Nr. UNINA-9910139040203321
Hoboken, NJ, : John Wiley & Sons, Inc., c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Lithium batteries [[electronic resource] ] : advanced technologies and applications / / edited by Bruno Scrosati ... [et al.]
Lithium batteries [[electronic resource] ] : advanced technologies and applications / / edited by Bruno Scrosati ... [et al.]
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, NJ, : John Wiley & Sons, Inc., c2013
Descrizione fisica 1 online resource (xi, 374 pages)
Disciplina 621.31/2424
Altri autori (Persone) ScrosatiBruno
Collana The ECS Series of Texts and Monographs
Soggetto topico Lithium cells
Electric batteries
ISBN 1-5231-1086-4
1-118-61551-4
1-118-61539-5
1-118-61541-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto LITHIUM BATTERIES; CONTENTS; CONTRIBUTORS; PREFACE; CHAPTER 1 ELECTROCHEMICAL CELLS: BASICS; 1 ELECTROCHEMICAL CELLS AND ION TRANSPORT; 2 CHEMICAL AND ELECTROCHEMICAL POTENTIAL; 2.1 Temperature Dependence of the Reversible Cell Voltage; 2.2 Chemical Potential; 2.3 Electrochemical Potential; 2.4 The Nernst Equation; 2.5 Electrochemical Double Layer; 3 OHMIC LOSSES AND ELECTRODE KINETICS; 3.1 Ohmic Potential Losses; 3.2 Kinetic Overpotential; 3.3 The Butler-Volmer Equation; 4 CONCLUDING REMARKS; BIBLIOGRAPHY; CHAPTER 2 LITHIUM BATTERIES: FROM EARLY STAGES TO THE FUTURE; 1 INTRODUCTION
2 ADVENT OF THE RECHARGEABLE LITHIUM BATTERY 3 A LOOK INTO THE FUTURE; 4 BEYOND THE HORIZON; REFERENCES; CHAPTER 3 ADDITIVES IN ORGANIC ELECTROLYTES FOR LITHIUM BATTERIES; 1 INTRODUCTION; 1.1 Shortcomings of Standard Liquid or Gel Electrolytes; 1.2 The Advent of Additives; 1.3 Additive Criteria and Development Process; 2 LiPF6 SALT STABILIZERS; 2.1 Hindering and Deactivating PF5; 2.2 Impurity Scavenging; 2.3 Anion Receptors; 3 OVERCHARGE PROTECTORS; 3.1 Redox Shuttles; 3.2 Shutdown Additives; 4 FLAME RETARDANTS; 4.1 Classical Phosphates; 4.2 Cyclic Phosphazenes; 4.3 Ionic Liquids as Additives
5 SYNERGY EFFECTS BETWEEN ELECTROLYTE ADDITIVES 5.1 Double-Functionality Additives; 5.2 Synergies of Single-Functionality Additives; 6 CONCLUSIONS; REFERENCES; CHAPTER 4 ELECTROLYTES FOR LITHIUM-ION BATTERIES WITH HIGH-VOLTAGE CATHODES; 1 INTRODUCTION; 2 OXIDATION REACTIONS OF THE ELECTROLYTE WITH TRADITIONAL METAL OXIDE CATHODE MATERIALS; 3 THERMAL REACTIONS OF THE ELECTROLYTE WITH THE SURFACE OF METAL OXIDE CATHODES; 4 FORMULATION OF ELECTROLYTES FOR HIGH-VOLTAGE MATERIALS; 4.1 Chemistry of Cathodes at High Voltage
4.2 Novel Organic Solvents with Greater Oxidative Stability: Sulfones, Nitriles, and Fluorinated Solvents 4.3 Novel Additives for Cathode Surface Passivation; 5 SUMMARY; REFERENCES; CHAPTER 5 CORE-SHELL STRUCTURE CATHODE MATERIALS FOR RECHARGEABLE LITHIUM BATTERIES; 1 INTRODUCTION; 2 LAYER-STRUCTURED CORE-SHELL; 3 LAYER-STRUCTURED CORE-SHELL PARTICLES WITH A CONCENTRATION GRADIENT; 4 SPHERICAL CORE-SHELL Li[(Li0.05Mn0.95)0.8(Ni0.25Mn0.75)0.2]2O4 SPINEL; 5 CONCLUSIONS; Acknowledgments; REFERENCES; CHAPTER 6 PROBLEMS AND EXPECTANCY IN LITHIUM BATTERY TECHNOLOGIES; 1 INTRODUCTION
2 IMPORTANCE OF ENERGY STORAGE 3 DEVELOPMENT OF LITHIUM BATTERIES; 3.1 Lithium Batteries for Electric Vehicles; 3.2 Lithium Batteries for Mobile Applications; 4 DEVELOPMENT OF MATERIALS FOR RECHARGEABLE LITHIUM BATTERIES; 4.1 Safety; 4.2 Lifetime; 4.3 High Energy Density; 4.4 Cathode Materials; 4.5 Anode Materials; 4.6 Electrolytes; 5 PRODUCTION OF ELECTRODES FOR LITHIUM BATTERIES; 5.1 Energy and Power Density; 5.2 Particle Nature; 5.3 Composite Electrodes; 5.4 Current Collectors; 6 SUMMARY; REFERENCES; CHAPTER 7 FLUORINE-BASED POLYANIONIC COMPOUNDS FOR HIGH-VOLTAGE ELECTRODE MATERIALS
1 INTRODUCTION
Record Nr. UNINA-9910823207603321
Hoboken, NJ, : John Wiley & Sons, Inc., c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui