Advances in portfolio construction and implementation [[electronic resource] /] / edited by Stephen Satchell, Alan Scowcroft |
Edizione | [1st edition] |
Pubbl/distr/stampa | Amsterdam ; ; Oxford, : Butterworth-Heinemann, 2003 |
Descrizione fisica | 1 online resource (384 p.) |
Disciplina | 332.6 |
Altri autori (Persone) |
SatchellS (Stephen)
ScowcroftAlan |
Collana | Butterworth-Heinemann finance |
Soggetto topico |
Portfolio management
Portfolio management - Mathematical models Investments |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-96633-5
9786610966332 1-4175-0763-2 0-08-047184-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Advances in Portfolio Construction and Implementation; Copyright Page; Contents; List of Contributors; Introduction; Chapter 1. A review of portfolio planning: models and systems; 1.1 Introduction and Overview; 1.2 Alternative Computational Models; 1.3 Symmetric and Asymmetric Measures of Risk; 1.4 Computational Models in Practice; 1.5 Preparation of Data: Financial Data Marts; 1.6 Solution Methods; 1.7 Computational Experience; 1.8 Discussions and Conclusions; 1.9 Appendix 1: Piecewise Linear Approximation of the Quadratic Form
1.10 Appendix 2: Comparative Computational Views of the Alternative ModelsReferences; Web References; Acknowledgements; Chapter 2. Generalized mean-variance analysis and robust portfolio diversification; 2.1 Introduction; 2.2 Generalized Mean-Variance Analysis; 2.3 The State Preference Theory Approach to Portfolio Construction; 2.4 Implementation and Simulation; 2.5 Conclusions and Suggested Further Work; References; Chapter 3. Portfolio construction from mandate to stock weight: a practitioner's perspective; 3.1 Introduction; 3.2 Allocating Tracking Error for Multiple Portfolio Funds 3.3 Tracking Errors for Arbitrary Portfolios3.4 Active CAPM, or How Far Should a Bet be Taken?; 3.5 Implementing Ideas in Real Stock Portfolios; 3.6 Conclusions; References; Chapter 4. Enhanced indexation; 4.1 Introduction; 4.2 Constructing a Consistent View; 4.3 Enhanced Indexing; 4.4 An Illustrative Example: Top-down or Bottom-up?; 4.5 Conclusions; 4.6 Appendix 1: Derivation of the Theil-Goldberger Mixed Estimator; 4.7 Appendix 2: Optimization; References; Notes; Chapter 5. Portfolio management under taxes; 5.1 Introduction; 5.2 Do Taxes Really Matter to Investors and Managers? 5.3 The Core Problems5.4 The State of the Art; 5.5 The Multi-Period Aspect; 5.6 Loss Harvesting; 5.7 After-Tax Benchmarks; 5.8 Conclusions; References; Chapter 6. Using genetic algorithms to construct portfolios; 6.1 Limitations of Traditional Mean-Variance Portfolio Optimization; 6.2 Selecting a Method to Limit the Number of Securities in the Final Portfolio; 6.3 Practical Construction of a Genetic Algorithm-Based Optimizer; 6.4 Performance of Genetic Algorithm; 6.5 Conclusions; References; Chapter 7. Near-uniformly distributed, stochastically generated portfolios 7.1 Introduction - A Tractable N-Dimensional Experimental Control7.2 Applications; 7.3 Dynamic Constraints; 7.4 Results from the Dynamic Constraints Algorithm; 7.5 Problems and Limitations with Dynamic Constraints Algorithm; 7.6 Improvements to the Distribution; 7.7 Results of the Dynamic Constraints with Local Density Control; 7.8 Conclusions; 7.9 Further Work; 7.10 Appendix 1: Review of Holding Distribution in Low Dimensions with Minimal Constraints; 7.11 Appendix 2: Probability Distribution of Holding Weight in Monte Carlo Portfolios in N Dimensions with Minimal Constraints 7.12 Appendix 3: The Effects of Simple Holding Constraints on Expected Distribution of Asset Holding Weights |
Record Nr. | UNINA-9910456029303321 |
Amsterdam ; ; Oxford, : Butterworth-Heinemann, 2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in portfolio construction and implementation [[electronic resource] /] / edited by Stephen Satchell, Alan Scowcroft |
Edizione | [1st edition] |
Pubbl/distr/stampa | Amsterdam ; ; Oxford, : Butterworth-Heinemann, 2003 |
Descrizione fisica | 1 online resource (384 p.) |
Disciplina | 332.6 |
Altri autori (Persone) |
SatchellStephen <1949->
ScowcroftAlan |
Collana | Butterworth-Heinemann finance |
Soggetto topico |
Portfolio management
Portfolio management - Mathematical models Investments |
ISBN |
1-280-96633-5
9786610966332 1-4175-0763-2 0-08-047184-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Advances in Portfolio Construction and Implementation; Copyright Page; Contents; List of Contributors; Introduction; Chapter 1. A review of portfolio planning: models and systems; 1.1 Introduction and Overview; 1.2 Alternative Computational Models; 1.3 Symmetric and Asymmetric Measures of Risk; 1.4 Computational Models in Practice; 1.5 Preparation of Data: Financial Data Marts; 1.6 Solution Methods; 1.7 Computational Experience; 1.8 Discussions and Conclusions; 1.9 Appendix 1: Piecewise Linear Approximation of the Quadratic Form
1.10 Appendix 2: Comparative Computational Views of the Alternative ModelsReferences; Web References; Acknowledgements; Chapter 2. Generalized mean-variance analysis and robust portfolio diversification; 2.1 Introduction; 2.2 Generalized Mean-Variance Analysis; 2.3 The State Preference Theory Approach to Portfolio Construction; 2.4 Implementation and Simulation; 2.5 Conclusions and Suggested Further Work; References; Chapter 3. Portfolio construction from mandate to stock weight: a practitioner's perspective; 3.1 Introduction; 3.2 Allocating Tracking Error for Multiple Portfolio Funds 3.3 Tracking Errors for Arbitrary Portfolios3.4 Active CAPM, or How Far Should a Bet be Taken?; 3.5 Implementing Ideas in Real Stock Portfolios; 3.6 Conclusions; References; Chapter 4. Enhanced indexation; 4.1 Introduction; 4.2 Constructing a Consistent View; 4.3 Enhanced Indexing; 4.4 An Illustrative Example: Top-down or Bottom-up?; 4.5 Conclusions; 4.6 Appendix 1: Derivation of the Theil-Goldberger Mixed Estimator; 4.7 Appendix 2: Optimization; References; Notes; Chapter 5. Portfolio management under taxes; 5.1 Introduction; 5.2 Do Taxes Really Matter to Investors and Managers? 5.3 The Core Problems5.4 The State of the Art; 5.5 The Multi-Period Aspect; 5.6 Loss Harvesting; 5.7 After-Tax Benchmarks; 5.8 Conclusions; References; Chapter 6. Using genetic algorithms to construct portfolios; 6.1 Limitations of Traditional Mean-Variance Portfolio Optimization; 6.2 Selecting a Method to Limit the Number of Securities in the Final Portfolio; 6.3 Practical Construction of a Genetic Algorithm-Based Optimizer; 6.4 Performance of Genetic Algorithm; 6.5 Conclusions; References; Chapter 7. Near-uniformly distributed, stochastically generated portfolios 7.1 Introduction - A Tractable N-Dimensional Experimental Control7.2 Applications; 7.3 Dynamic Constraints; 7.4 Results from the Dynamic Constraints Algorithm; 7.5 Problems and Limitations with Dynamic Constraints Algorithm; 7.6 Improvements to the Distribution; 7.7 Results of the Dynamic Constraints with Local Density Control; 7.8 Conclusions; 7.9 Further Work; 7.10 Appendix 1: Review of Holding Distribution in Low Dimensions with Minimal Constraints; 7.11 Appendix 2: Probability Distribution of Holding Weight in Monte Carlo Portfolios in N Dimensions with Minimal Constraints 7.12 Appendix 3: The Effects of Simple Holding Constraints on Expected Distribution of Asset Holding Weights |
Record Nr. | UNINA-9910780446603321 |
Amsterdam ; ; Oxford, : Butterworth-Heinemann, 2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in portfolio construction and implementation / / edited by Stephen Satchell, Alan Scowcroft |
Edizione | [1st edition] |
Pubbl/distr/stampa | Amsterdam ; ; Oxford, : Butterworth-Heinemann, 2003 |
Descrizione fisica | 1 online resource (384 p.) |
Disciplina | 332.6 |
Altri autori (Persone) |
SatchellS (Stephen)
ScowcroftAlan |
Collana | Butterworth-Heinemann finance |
Soggetto topico |
Portfolio management
Portfolio management - Mathematical models Investments |
ISBN |
1-280-96633-5
9786610966332 1-4175-0763-2 0-08-047184-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Advances in Portfolio Construction and Implementation; Copyright Page; Contents; List of Contributors; Introduction; Chapter 1. A review of portfolio planning: models and systems; 1.1 Introduction and Overview; 1.2 Alternative Computational Models; 1.3 Symmetric and Asymmetric Measures of Risk; 1.4 Computational Models in Practice; 1.5 Preparation of Data: Financial Data Marts; 1.6 Solution Methods; 1.7 Computational Experience; 1.8 Discussions and Conclusions; 1.9 Appendix 1: Piecewise Linear Approximation of the Quadratic Form
1.10 Appendix 2: Comparative Computational Views of the Alternative ModelsReferences; Web References; Acknowledgements; Chapter 2. Generalized mean-variance analysis and robust portfolio diversification; 2.1 Introduction; 2.2 Generalized Mean-Variance Analysis; 2.3 The State Preference Theory Approach to Portfolio Construction; 2.4 Implementation and Simulation; 2.5 Conclusions and Suggested Further Work; References; Chapter 3. Portfolio construction from mandate to stock weight: a practitioner's perspective; 3.1 Introduction; 3.2 Allocating Tracking Error for Multiple Portfolio Funds 3.3 Tracking Errors for Arbitrary Portfolios3.4 Active CAPM, or How Far Should a Bet be Taken?; 3.5 Implementing Ideas in Real Stock Portfolios; 3.6 Conclusions; References; Chapter 4. Enhanced indexation; 4.1 Introduction; 4.2 Constructing a Consistent View; 4.3 Enhanced Indexing; 4.4 An Illustrative Example: Top-down or Bottom-up?; 4.5 Conclusions; 4.6 Appendix 1: Derivation of the Theil-Goldberger Mixed Estimator; 4.7 Appendix 2: Optimization; References; Notes; Chapter 5. Portfolio management under taxes; 5.1 Introduction; 5.2 Do Taxes Really Matter to Investors and Managers? 5.3 The Core Problems5.4 The State of the Art; 5.5 The Multi-Period Aspect; 5.6 Loss Harvesting; 5.7 After-Tax Benchmarks; 5.8 Conclusions; References; Chapter 6. Using genetic algorithms to construct portfolios; 6.1 Limitations of Traditional Mean-Variance Portfolio Optimization; 6.2 Selecting a Method to Limit the Number of Securities in the Final Portfolio; 6.3 Practical Construction of a Genetic Algorithm-Based Optimizer; 6.4 Performance of Genetic Algorithm; 6.5 Conclusions; References; Chapter 7. Near-uniformly distributed, stochastically generated portfolios 7.1 Introduction - A Tractable N-Dimensional Experimental Control7.2 Applications; 7.3 Dynamic Constraints; 7.4 Results from the Dynamic Constraints Algorithm; 7.5 Problems and Limitations with Dynamic Constraints Algorithm; 7.6 Improvements to the Distribution; 7.7 Results of the Dynamic Constraints with Local Density Control; 7.8 Conclusions; 7.9 Further Work; 7.10 Appendix 1: Review of Holding Distribution in Low Dimensions with Minimal Constraints; 7.11 Appendix 2: Probability Distribution of Holding Weight in Monte Carlo Portfolios in N Dimensions with Minimal Constraints 7.12 Appendix 3: The Effects of Simple Holding Constraints on Expected Distribution of Asset Holding Weights |
Record Nr. | UNINA-9910823089103321 |
Amsterdam ; ; Oxford, : Butterworth-Heinemann, 2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|