top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Machine learning with quantum computers / / Maria Schuld, Francesco Petruccione
Machine learning with quantum computers / / Maria Schuld, Francesco Petruccione
Autore Schuld Maria
Edizione [Second edition.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (321 pages)
Disciplina 004.1
Collana Quantum science and technology
Soggetto topico Quantum computers
ISBN 3-030-83098-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996466842903316
Schuld Maria  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Machine Learning with Quantum Computers / / by Maria Schuld, Francesco Petruccione
Machine Learning with Quantum Computers / / by Maria Schuld, Francesco Petruccione
Autore Schuld Maria
Edizione [2nd ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (321 pages)
Disciplina 004.1
Collana Quantum Science and Technology
Soggetto topico Quantum computers
Machine learning
Mathematics
Quantum Computing
Machine Learning
Mathematics and Computing
ISBN 3-030-83098-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction -- Chapter 2. Machine Learning -- Chapter 3. Quantum Computing -- Chapter 4. Representing Data on a Quantum Computer -- Chapter 5. Variational Circuits as Machine Learning Models -- Chapter 6. Quantum Models as Kernel Methods -- Chapter 7. Fault-Tolerant Quantum Machine Learning -- Chapter 8. Approaches Based on the Ising Model -- Chapter 9. Potential Quantum Advantages.
Record Nr. UNINA-9910506399603321
Schuld Maria  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Supervised Learning with Quantum Computers / / by Maria Schuld, Francesco Petruccione
Supervised Learning with Quantum Computers / / by Maria Schuld, Francesco Petruccione
Autore Schuld Maria
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (293 pages)
Disciplina 530.1201514
Collana Quantum Science and Technology
Soggetto topico Quantum theory
Quantum computers
Pattern recognition systems
Spintronics
Mathematical physics
Artificial intelligence
Quantum Physics
Quantum Computing
Automated Pattern Recognition
Theoretical, Mathematical and Computational Physics
Artificial Intelligence
ISBN 3-319-96424-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Background -- How quantum computers can classify data -- Organisation of the book -- Machine Learning -- Prediction -- Models -- Training -- Methods in machine learning -- Quantum Information -- Introduction to quantum theory -- Introduction to quantum computing -- An example: The Deutsch-Josza algorithm -- Strategies of information encoding -- Important quantum routines -- Quantum advantages -- Computational complexity of learning -- Sample complexity -- Model complexity -- Information encoding -- Basis encoding -- Amplitude encoding -- Qsample encoding -- Hamiltonian encoding -- Quantum computing for inference -- Linear models -- Kernel methods -- Probabilistic models -- Quantum computing for training -- Quantum blas -- Search and amplitude amplification -- Hybrid training for variational algorithms -- Quantum adiabatic machine learning -- Learning with quantum models -- Quantum extensions of Ising-type models -- Variational classifiers and neural networks -- Other approaches to buildquantum models -- Prospects for near-term quantum machine learning -- Small versus big data -- Hybrid versus fully coherent approaches -- Qualitative versus quantitative advantages -- What machine learning can do for quantum computing -- References.
Record Nr. UNINA-9910300533803321
Schuld Maria  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui