Some special properties of the adjunction theory for 3-folds in P⁵ / / Mauro C. Beltrametti, Michael Schneider, Andrew J. Sommese
| Some special properties of the adjunction theory for 3-folds in P⁵ / / Mauro C. Beltrametti, Michael Schneider, Andrew J. Sommese |
| Autore | Beltrametti Mauro <1948-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1995 |
| Descrizione fisica | 1 online resource (79 p.) |
| Disciplina | 516.3/5 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Adjunction theory
Threefolds (Algebraic geometry) |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0133-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | ""Contents""; ""Introduction""; ""Chapter 0. Background material""; ""Chapter 1. The second reduction for n�folds in P[sup(2n-1)]""; ""Chapter 2. General formulae for threefolds in P[sup(5)]""; ""Chapter 3. Nefness and bigness of K[sub(x)+ 2K""; ""Chapter 4. Ampleness of K[sub(x)+ 2K""; ""Chapter 5. Nefness and bigness of K[sub(x)+ K""; ""Chapter 6. Invariants for threefolds in P[sub(5)] up to degree 12""; ""References"" |
| Record Nr. | UNINA-9910479854203321 |
Beltrametti Mauro <1948->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 1995 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Some special properties of the adjunction theory for 3-folds in P⁵ / / Mauro C. Beltrametti, Michael Schneider, Andrew J. Sommese
| Some special properties of the adjunction theory for 3-folds in P⁵ / / Mauro C. Beltrametti, Michael Schneider, Andrew J. Sommese |
| Autore | Beltrametti Mauro <1948-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1995 |
| Descrizione fisica | 1 online resource (79 p.) |
| Disciplina | 516.3/5 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Adjunction theory
Threefolds (Algebraic geometry) |
| ISBN | 1-4704-0133-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | ""Contents""; ""Introduction""; ""Chapter 0. Background material""; ""Chapter 1. The second reduction for n�folds in P[sup(2n-1)]""; ""Chapter 2. General formulae for threefolds in P[sup(5)]""; ""Chapter 3. Nefness and bigness of K[sub(x)+ 2K""; ""Chapter 4. Ampleness of K[sub(x)+ 2K""; ""Chapter 5. Nefness and bigness of K[sub(x)+ K""; ""Chapter 6. Invariants for threefolds in P[sub(5)] up to degree 12""; ""References"" |
| Record Nr. | UNINA-9910788757303321 |
Beltrametti Mauro <1948->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 1995 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Some special properties of the adjunction theory for 3-folds in P⁵ / / Mauro C. Beltrametti, Michael Schneider, Andrew J. Sommese
| Some special properties of the adjunction theory for 3-folds in P⁵ / / Mauro C. Beltrametti, Michael Schneider, Andrew J. Sommese |
| Autore | Beltrametti Mauro <1948-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1995 |
| Descrizione fisica | 1 online resource (79 p.) |
| Disciplina | 516.3/5 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Adjunction theory
Threefolds (Algebraic geometry) |
| ISBN | 1-4704-0133-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | ""Contents""; ""Introduction""; ""Chapter 0. Background material""; ""Chapter 1. The second reduction for n�folds in P[sup(2n-1)]""; ""Chapter 2. General formulae for threefolds in P[sup(5)]""; ""Chapter 3. Nefness and bigness of K[sub(x)+ 2K""; ""Chapter 4. Ampleness of K[sub(x)+ 2K""; ""Chapter 5. Nefness and bigness of K[sub(x)+ K""; ""Chapter 6. Invariants for threefolds in P[sub(5)] up to degree 12""; ""References"" |
| Record Nr. | UNINA-9910828268003321 |
Beltrametti Mauro <1948->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 1995 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||