top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Neural Networks in Pattern Recognition [[electronic resource] ] : 9th IAPR TC3 Workshop, ANNPR 2020, Winterthur, Switzerland, September 2–4, 2020, Proceedings / / edited by Frank-Peter Schilling, Thilo Stadelmann
Artificial Neural Networks in Pattern Recognition [[electronic resource] ] : 9th IAPR TC3 Workshop, ANNPR 2020, Winterthur, Switzerland, September 2–4, 2020, Proceedings / / edited by Frank-Peter Schilling, Thilo Stadelmann
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XI, 306 p. 205 illus., 114 illus. in color.)
Disciplina 006.32
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Optical data processing
Data mining
Pattern recognition
Artificial Intelligence
Image Processing and Computer Vision
Data Mining and Knowledge Discovery
Pattern Recognition
Computer Imaging, Vision, Pattern Recognition and Graphics
ISBN 3-030-58309-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Deep Learning Methods for Image Guidance in Radiation Therapy Intentional Image Similarity Search -- Sttructured (De)composable Representations Trained with Neural Networks -- Long Distance Relationships without Time Travel: Boosting the Performance of a Sparse Predictive Autoencoder in Sequence Modeling -- Improving Accuracy and Efficiency of Object Detection Algorithms using Multiscale Feature Aggregation Plugins -- Abstract Echo State Networks -- Minimal Complexity Support Vector Machines -- Named Entity Disambiguation at Scale -- Geometric Attention for Prediction of Differential Properties in 3D Point Clouds -- How (Not) to Measure Bias in Face Recognition Networks.-Feature Extraction: A Time Window Analysis based on the X-ITE Pain Database -- Pain Intensity Recognition - An Analysis of Short-Time Sequences in a Real-World Scenario -- A deep learning approach for efficient registration of dual view mammography -- Deep Transfer Learning for Texture Classification in Colorectal Cancer Histology -- Applications of Generative Adversarial Networks to Dermatologic Imaging -- Typing Plasmids with Distributed Sequence Representation -- KP-YOLO: a modification of YOLO algorithm for the keypoint-based detection of QR Codes -- Using Mask R-CNN for Image-Based Wear Classification of Solid Carbide Milling and Drilling Tools -- A Hybrid Deep Learning Approach For Forecasting Air Temperature -- Using CNNs to optimize numerical simulations in geotechnical engineering -- Going for 2D or 3D? Investigating various Machine Learning Approaches for Peach Variety Identification -- A Transfer Learning End-to-End Arabic Text-To-Speech (TTS) Deep Architecture -- ML-Based Trading Models: An investigation during COVID-19 pandemic crisis -- iNNvestigate-GUI - Explaining Neural Networks Through an Interactive Visualization Tool.
Record Nr. UNISA-996418283303316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Artificial Neural Networks in Pattern Recognition : 9th IAPR TC3 Workshop, ANNPR 2020, Winterthur, Switzerland, September 2–4, 2020, Proceedings / / edited by Frank-Peter Schilling, Thilo Stadelmann
Artificial Neural Networks in Pattern Recognition : 9th IAPR TC3 Workshop, ANNPR 2020, Winterthur, Switzerland, September 2–4, 2020, Proceedings / / edited by Frank-Peter Schilling, Thilo Stadelmann
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XI, 306 p. 205 illus., 114 illus. in color.)
Disciplina 006.32
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Optical data processing
Data mining
Pattern recognition
Artificial Intelligence
Image Processing and Computer Vision
Data Mining and Knowledge Discovery
Pattern Recognition
Computer Imaging, Vision, Pattern Recognition and Graphics
ISBN 3-030-58309-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Deep Learning Methods for Image Guidance in Radiation Therapy Intentional Image Similarity Search -- Sttructured (De)composable Representations Trained with Neural Networks -- Long Distance Relationships without Time Travel: Boosting the Performance of a Sparse Predictive Autoencoder in Sequence Modeling -- Improving Accuracy and Efficiency of Object Detection Algorithms using Multiscale Feature Aggregation Plugins -- Abstract Echo State Networks -- Minimal Complexity Support Vector Machines -- Named Entity Disambiguation at Scale -- Geometric Attention for Prediction of Differential Properties in 3D Point Clouds -- How (Not) to Measure Bias in Face Recognition Networks.-Feature Extraction: A Time Window Analysis based on the X-ITE Pain Database -- Pain Intensity Recognition - An Analysis of Short-Time Sequences in a Real-World Scenario -- A deep learning approach for efficient registration of dual view mammography -- Deep Transfer Learning for Texture Classification in Colorectal Cancer Histology -- Applications of Generative Adversarial Networks to Dermatologic Imaging -- Typing Plasmids with Distributed Sequence Representation -- KP-YOLO: a modification of YOLO algorithm for the keypoint-based detection of QR Codes -- Using Mask R-CNN for Image-Based Wear Classification of Solid Carbide Milling and Drilling Tools -- A Hybrid Deep Learning Approach For Forecasting Air Temperature -- Using CNNs to optimize numerical simulations in geotechnical engineering -- Going for 2D or 3D? Investigating various Machine Learning Approaches for Peach Variety Identification -- A Transfer Learning End-to-End Arabic Text-To-Speech (TTS) Deep Architecture -- ML-Based Trading Models: An investigation during COVID-19 pandemic crisis -- iNNvestigate-GUI - Explaining Neural Networks Through an Interactive Visualization Tool.
Record Nr. UNINA-9910427719603321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui