Linear models in statistics [[electronic resource] /] / Alvin C. Rencher and G. Bruce Schaalje
| Linear models in statistics [[electronic resource] /] / Alvin C. Rencher and G. Bruce Schaalje |
| Autore | Rencher Alvin C. <1934-> |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2008 |
| Descrizione fisica | 1 online resource (690 p.) |
| Disciplina |
519.5/35
519.535 |
| Altri autori (Persone) | SchaaljeG. Bruce |
| Soggetto topico | Linear models (Statistics) |
| ISBN |
1-281-22163-5
9786611221638 0-470-19261-5 0-470-19260-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
LINEAR MODELS IN STATISTICS; CONTENTS; Preface; 1 Introduction; 1.1 Simple Linear Regression Model; 1.2 Multiple Linear Regression Model; 1.3 Analysis-of-Variance Models; 2 Matrix Algebra; 2.1 Matrix and Vector Notation; 2.1.1 Matrices, Vectors, and Scalars; 2.1.2 Matrix Equality; 2.1.3 Transpose; 2.1.4 Matrices of Special Form; 2.2 Operations; 2.2.1 Sum of Two Matrices or Two Vectors; 2.2.2 Product of a Scalar and a Matrix; 2.2.3 Product of Two Matrices or Two Vectors; 2.2.4 Hadamard Product of Two Matrices or Two Vectors; 2.3 Partitioned Matrices; 2.4 Rank; 2.5 Inverse
2.6 Positive Definite Matrices2.7 Systems of Equations; 2.8 Generalized Inverse; 2.8.1 Definition and Properties; 2.8.2 Generalized Inverses and Systems of Equations; 2.9 Determinants; 2.10 Orthogonal Vectors and Matrices; 2.11 Trace; 2.12 Eigenvalues and Eigenvectors; 2.12.1 Definition; 2.12.2 Functions of a Matrix; 2.12.3 Products; 2.12.4 Symmetric Matrices; 2.12.5 Positive Definite and Semidefinite Matrices; 2.13 Idempotent Matrices; 2.14 Vector and Matrix Calculus; 2.14.1 Derivatives of Functions of Vectors and Matrices; 2.14.2 Derivatives Involving Inverse Matrices and Determinants 2.14.3 Maximization or Minimization of a Function of a Vector3 Random Vectors and Matrices; 3.1 Introduction; 3.2 Means, Variances, Covariances, and Correlations; 3.3 Mean Vectors and Covariance Matrices for Random Vectors; 3.3.1 Mean Vectors; 3.3.2 Covariance Matrix; 3.3.3 Generalized Variance; 3.3.4 Standardized Distance; 3.4 Correlation Matrices; 3.5 Mean Vectors and Covariance Matrices for Partitioned Random Vectors; 3.6 Linear Functions of Random Vectors; 3.6.1 Means; 3.6.2 Variances and Covariances; 4 Multivariate Normal Distribution; 4.1 Univariate Normal Density Function 4.2 Multivariate Normal Density Function4.3 Moment Generating Functions; 4.4 Properties of the Multivariate Normal Distribution; 4.5 Partial Correlation; 5 Distribution of Quadratic Forms in y; 5.1 Sums of Squares; 5.2 Mean and Variance of Quadratic Forms; 5.3 Noncentral Chi-Square Distribution; 5.4 Noncentral F and t Distributions; 5.4.1 Noncentral F Distribution; 5.4.2 Noncentral t Distribution; 5.5 Distribution of Quadratic Forms; 5.6 Independence of Linear Forms and Quadratic Forms; 6 Simple Linear Regression; 6.1 The Model; 6.2 Estimation of β(0), β(1), and σ(2) 6.3 Hypothesis Test and Confidence Interval for β(1)6.4 Coefficient of Determination; 7 Multiple Regression: Estimation; 7.1 Introduction; 7.2 The Model; 7.3 Estimation of β and σ(2); 7.3.1 Least-Squares Estimator for β; 7.3.2 Properties of the Least-Squares Estimator β; 7.3.3 An Estimator for σ(2); 7.4 Geometry of Least-Squares; 7.4.1 Parameter Space, Data Space, and Prediction Space; 7.4.2 Geometric Interpretation of the Multiple Linear Regression Model; 7.5 The Model in Centered Form; 7.6 Normal Model; 7.6.1 Assumptions; 7.6.2 Maximum Likelihood Estimators for β and σ(2) 7.6.3 Properties of β and σ(2) |
| Record Nr. | UNINA-9910144719203321 |
Rencher Alvin C. <1934->
|
||
| Hoboken, N.J., : Wiley-Interscience, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Linear models in statistics [[electronic resource] /] / Alvin C. Rencher and G. Bruce Schaalje
| Linear models in statistics [[electronic resource] /] / Alvin C. Rencher and G. Bruce Schaalje |
| Autore | Rencher Alvin C. <1934-> |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2008 |
| Descrizione fisica | 1 online resource (690 p.) |
| Disciplina |
519.5/35
519.535 |
| Altri autori (Persone) | SchaaljeG. Bruce |
| Soggetto topico | Linear models (Statistics) |
| ISBN |
1-281-22163-5
9786611221638 0-470-19261-5 0-470-19260-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
LINEAR MODELS IN STATISTICS; CONTENTS; Preface; 1 Introduction; 1.1 Simple Linear Regression Model; 1.2 Multiple Linear Regression Model; 1.3 Analysis-of-Variance Models; 2 Matrix Algebra; 2.1 Matrix and Vector Notation; 2.1.1 Matrices, Vectors, and Scalars; 2.1.2 Matrix Equality; 2.1.3 Transpose; 2.1.4 Matrices of Special Form; 2.2 Operations; 2.2.1 Sum of Two Matrices or Two Vectors; 2.2.2 Product of a Scalar and a Matrix; 2.2.3 Product of Two Matrices or Two Vectors; 2.2.4 Hadamard Product of Two Matrices or Two Vectors; 2.3 Partitioned Matrices; 2.4 Rank; 2.5 Inverse
2.6 Positive Definite Matrices2.7 Systems of Equations; 2.8 Generalized Inverse; 2.8.1 Definition and Properties; 2.8.2 Generalized Inverses and Systems of Equations; 2.9 Determinants; 2.10 Orthogonal Vectors and Matrices; 2.11 Trace; 2.12 Eigenvalues and Eigenvectors; 2.12.1 Definition; 2.12.2 Functions of a Matrix; 2.12.3 Products; 2.12.4 Symmetric Matrices; 2.12.5 Positive Definite and Semidefinite Matrices; 2.13 Idempotent Matrices; 2.14 Vector and Matrix Calculus; 2.14.1 Derivatives of Functions of Vectors and Matrices; 2.14.2 Derivatives Involving Inverse Matrices and Determinants 2.14.3 Maximization or Minimization of a Function of a Vector3 Random Vectors and Matrices; 3.1 Introduction; 3.2 Means, Variances, Covariances, and Correlations; 3.3 Mean Vectors and Covariance Matrices for Random Vectors; 3.3.1 Mean Vectors; 3.3.2 Covariance Matrix; 3.3.3 Generalized Variance; 3.3.4 Standardized Distance; 3.4 Correlation Matrices; 3.5 Mean Vectors and Covariance Matrices for Partitioned Random Vectors; 3.6 Linear Functions of Random Vectors; 3.6.1 Means; 3.6.2 Variances and Covariances; 4 Multivariate Normal Distribution; 4.1 Univariate Normal Density Function 4.2 Multivariate Normal Density Function4.3 Moment Generating Functions; 4.4 Properties of the Multivariate Normal Distribution; 4.5 Partial Correlation; 5 Distribution of Quadratic Forms in y; 5.1 Sums of Squares; 5.2 Mean and Variance of Quadratic Forms; 5.3 Noncentral Chi-Square Distribution; 5.4 Noncentral F and t Distributions; 5.4.1 Noncentral F Distribution; 5.4.2 Noncentral t Distribution; 5.5 Distribution of Quadratic Forms; 5.6 Independence of Linear Forms and Quadratic Forms; 6 Simple Linear Regression; 6.1 The Model; 6.2 Estimation of β(0), β(1), and σ(2) 6.3 Hypothesis Test and Confidence Interval for β(1)6.4 Coefficient of Determination; 7 Multiple Regression: Estimation; 7.1 Introduction; 7.2 The Model; 7.3 Estimation of β and σ(2); 7.3.1 Least-Squares Estimator for β; 7.3.2 Properties of the Least-Squares Estimator β; 7.3.3 An Estimator for σ(2); 7.4 Geometry of Least-Squares; 7.4.1 Parameter Space, Data Space, and Prediction Space; 7.4.2 Geometric Interpretation of the Multiple Linear Regression Model; 7.5 The Model in Centered Form; 7.6 Normal Model; 7.6.1 Assumptions; 7.6.2 Maximum Likelihood Estimators for β and σ(2) 7.6.3 Properties of β and σ(2) |
| Record Nr. | UNINA-9910830151803321 |
Rencher Alvin C. <1934->
|
||
| Hoboken, N.J., : Wiley-Interscience, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Linear models in statistics / / Alvin C. Rencher and G. Bruce Schaalje
| Linear models in statistics / / Alvin C. Rencher and G. Bruce Schaalje |
| Autore | Rencher Alvin C. <1934-> |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2008 |
| Descrizione fisica | 1 online resource (690 p.) |
| Disciplina | 519.5/35 |
| Altri autori (Persone) | SchaaljeG. Bruce |
| Soggetto topico | Linear models (Statistics) |
| ISBN |
9786611221638
9781281221636 1281221635 9780470192610 0470192615 9780470192603 0470192607 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
LINEAR MODELS IN STATISTICS; CONTENTS; Preface; 1 Introduction; 1.1 Simple Linear Regression Model; 1.2 Multiple Linear Regression Model; 1.3 Analysis-of-Variance Models; 2 Matrix Algebra; 2.1 Matrix and Vector Notation; 2.1.1 Matrices, Vectors, and Scalars; 2.1.2 Matrix Equality; 2.1.3 Transpose; 2.1.4 Matrices of Special Form; 2.2 Operations; 2.2.1 Sum of Two Matrices or Two Vectors; 2.2.2 Product of a Scalar and a Matrix; 2.2.3 Product of Two Matrices or Two Vectors; 2.2.4 Hadamard Product of Two Matrices or Two Vectors; 2.3 Partitioned Matrices; 2.4 Rank; 2.5 Inverse
2.6 Positive Definite Matrices2.7 Systems of Equations; 2.8 Generalized Inverse; 2.8.1 Definition and Properties; 2.8.2 Generalized Inverses and Systems of Equations; 2.9 Determinants; 2.10 Orthogonal Vectors and Matrices; 2.11 Trace; 2.12 Eigenvalues and Eigenvectors; 2.12.1 Definition; 2.12.2 Functions of a Matrix; 2.12.3 Products; 2.12.4 Symmetric Matrices; 2.12.5 Positive Definite and Semidefinite Matrices; 2.13 Idempotent Matrices; 2.14 Vector and Matrix Calculus; 2.14.1 Derivatives of Functions of Vectors and Matrices; 2.14.2 Derivatives Involving Inverse Matrices and Determinants 2.14.3 Maximization or Minimization of a Function of a Vector3 Random Vectors and Matrices; 3.1 Introduction; 3.2 Means, Variances, Covariances, and Correlations; 3.3 Mean Vectors and Covariance Matrices for Random Vectors; 3.3.1 Mean Vectors; 3.3.2 Covariance Matrix; 3.3.3 Generalized Variance; 3.3.4 Standardized Distance; 3.4 Correlation Matrices; 3.5 Mean Vectors and Covariance Matrices for Partitioned Random Vectors; 3.6 Linear Functions of Random Vectors; 3.6.1 Means; 3.6.2 Variances and Covariances; 4 Multivariate Normal Distribution; 4.1 Univariate Normal Density Function 4.2 Multivariate Normal Density Function4.3 Moment Generating Functions; 4.4 Properties of the Multivariate Normal Distribution; 4.5 Partial Correlation; 5 Distribution of Quadratic Forms in y; 5.1 Sums of Squares; 5.2 Mean and Variance of Quadratic Forms; 5.3 Noncentral Chi-Square Distribution; 5.4 Noncentral F and t Distributions; 5.4.1 Noncentral F Distribution; 5.4.2 Noncentral t Distribution; 5.5 Distribution of Quadratic Forms; 5.6 Independence of Linear Forms and Quadratic Forms; 6 Simple Linear Regression; 6.1 The Model; 6.2 Estimation of β(0), β(1), and σ(2) 6.3 Hypothesis Test and Confidence Interval for β(1)6.4 Coefficient of Determination; 7 Multiple Regression: Estimation; 7.1 Introduction; 7.2 The Model; 7.3 Estimation of β and σ(2); 7.3.1 Least-Squares Estimator for β; 7.3.2 Properties of the Least-Squares Estimator β; 7.3.3 An Estimator for σ(2); 7.4 Geometry of Least-Squares; 7.4.1 Parameter Space, Data Space, and Prediction Space; 7.4.2 Geometric Interpretation of the Multiple Linear Regression Model; 7.5 The Model in Centered Form; 7.6 Normal Model; 7.6.1 Assumptions; 7.6.2 Maximum Likelihood Estimators for β and σ(2) 7.6.3 Properties of β and σ(2) |
| Record Nr. | UNINA-9911019467103321 |
Rencher Alvin C. <1934->
|
||
| Hoboken, N.J., : Wiley-Interscience, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||