top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Nanofiltration : principles, applications, and new materials / / edited by Andrea Iris Schäfer, Anthony G. Fane
Nanofiltration : principles, applications, and new materials / / edited by Andrea Iris Schäfer, Anthony G. Fane
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2020]
Descrizione fisica 1 online resource (1242 pages)
Disciplina 660.284245
Soggetto topico Nanofiltration
Soggetto genere / forma Electronic books.
ISBN 3-527-82497-9
3-527-82496-0
3-527-82498-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Foreword (Second Edition, 2020) -- Foreword (First Edition, 2005) -- Acknowledgements -- Dedication -- Introduction -- Part I Principles -- Chapter 1 History of Nanofiltration Membranes from 1960 to 1990 -- 1.1 Overview -- 1.2 Introduction -- 1.3 First‐Generation NF Membranes -- 1.3.1 Cellulose Acetate Asymmetric Membranes -- 1.3.2 Deficiencies in Cellulosic Membranes -- 1.3.3 Polyelectrolyte Complexes -- 1.3.4 Polyamide Membranes -- 1.3.5 Polysulfones and Other Polymer Membranes -- 1.4 Early Studies of Charged Reverse Osmosis (Hyperfiltration) Membranes -- 1.4.1 Dynamic Membranes -- 1.4.2 Polyelectrolyte Membranes -- 1.5 Early Models of NF Selectivity -- 1.6 Negative Salt Rejection -- 1.6.1 Solutions of One Electrolyte -- 1.6.2 Separation by Negative Salt Rejection -- 1.7 Early Development of Industrial NF: Ionic Modification of Asymmetric Cellulose Acetate -- 1.8 Early NF Composites -- 1.8.1 General -- 1.8.2 Plasma Polymerization -- 1.8.3 Graft Polymerization -- 1.9 NF Composites of the 1980s -- 1.9.1 Piperazineamide Membranes -- 1.9.2 Other NF Interfacially Produced Composites -- 1.9.3 Modification of RO Membrane Composites to Bring Them into the NF Range -- 1.10 Composites Produced by Noninterfacial Cross‐linking -- 1.10.1 Polyvinyl Alcohol Composites -- 1.10.2 Sulfonated Engineering Plastics as Selective Barriers -- 1.10.3 Polyethyleneimine -- 1.11 Chemically Stable NF Membranes -- 1.11.1 Chemically Stable Polymeric Asymmetric Membranes -- 1.11.2 Oxidant and pH‐Stable Composite Membranes -- 1.11.3 Solvent‐Stable NF Composites -- 1.11.4 Chemically Stable Inorganic NF and Polymeric/Inorganic Hybrids -- 1.12 Conclusions -- Abbreviations -- References -- Chapter 2 Nanofiltration Membrane Materials and Preparation -- 2.1 General Introduction -- 2.2 Phase Inversion -- 2.2.1 Introduction.
2.2.2 Basic Principles -- 2.2.3 Polymer Type -- 2.2.4 Casting Solution -- 2.2.4.1 Polymer Concentration -- 2.2.4.2 Addition of Volatile Cosolvents -- 2.2.4.3 Addition of Nonsolvents -- 2.2.4.4 Addition of Other Additives -- 2.2.5 Postcasting Evaporation -- 2.2.6 Coagulation Bath -- 2.2.7 Post‐treatment -- 2.2.7.1 Annealing -- 2.2.7.2 Cross‐linking -- 2.2.7.3 Drying -- 2.3 Interfacial Polymerization -- 2.3.1 Introduction -- 2.3.2 Support Materials -- 2.3.3 Monomers -- 2.3.3.1 Amines -- 2.3.3.2 Acyl Chlorides -- 2.3.3.3 Other Polymer Types -- 2.3.4 Monomer Concentrations and Reaction Time -- 2.3.5 Solvent -- 2.3.6 Additives -- 2.3.7 New Approaches -- 2.3.8 Post‐treatment -- 2.4 Coating -- 2.4.1 Introduction -- 2.4.2 Examples -- 2.5 Surface Modification -- 2.5.1 Introduction -- 2.5.2 Plasma Treatment -- 2.5.3 Organic Reactions -- 2.5.3.1 Covalent Linking of Monomers -- 2.5.3.2 Sulfonation -- 2.5.3.3 Nitration -- 2.5.4 Polymer Grafting -- 2.5.5 Photochemical Modification -- 2.6 Ceramic Membranes -- 2.6.1 Introduction -- 2.6.2 General Synthesis Procedure -- 2.6.2.1 Sol -- 2.6.2.2 Coating -- 2.6.2.3 Gel -- 2.6.2.4 Sintering -- 2.6.3 Membrane Types -- 2.6.3.1 Titania -- 2.6.3.2 Zirconia -- 2.6.3.3 Alumina -- 2.6.3.4 Silica -- 2.6.3.5 Mixed Oxides -- 2.6.3.6 Organic Doped Ceramic Membranes -- 2.6.4 Supports -- 2.6.5 Surface Modification -- 2.7 Hollow Fiber Preparation -- 2.7.1 Introduction -- 2.7.2 General Synthesis Procedure -- 2.7.3 Composite Hollow Fiber Membranes -- 2.8 Commercial and Novel (SR)NF Membranes -- 2.8.1 Commercial (SR)NF Membranes -- 2.8.2 Novel (SR)NF Membranes -- 2.9 Outlook -- Acknowledgements -- Abbreviations -- References -- Chapter 3 Nanofiltration Module Design and Operation -- 3.1 Introduction -- 3.1.1 Role of the Module -- 3.1.2 Concentration Polarization and Cross‐Flow -- 3.1.3 Fouling -- 3.2 Module Types and Characteristics.
3.2.1 Plate and Frame -- 3.2.2 Spiral Wound -- 3.2.3 Tubular -- 3.2.4 Hollow Fiber and Capillary -- 3.2.5 Others -- 3.2.5.1 Submerged Membranes -- 3.2.5.2 High Shear Devices -- 3.2.5.3 Laboratory Modules -- 3.2.6 Module Characteristics -- 3.3 Spiral Wound Module (SWM) - Design Features -- 3.3.1 Feed Channel Spacers -- 3.3.2 Modeling and Optimization -- 3.4 Strategies to Improve Control of Concentration Polarization -- 3.4.1 Process Limitation by Concentration Polarization -- 3.4.2 High Shear - Vibrating the Membrane -- 3.4.3 High Shear - Rotor/Stator Modules -- 3.4.4 Two‐Phase Flow -- 3.4.5 Unsteady Shear Comparison -- 3.5 System Design and Operation -- 3.5.1 System Configurations -- 3.5.2 Diafiltration -- 3.5.3 Reflux‐Recycle Cascade (Combining RO and NF) -- 3.5.4 Batch Operation - Energy Saving (Closed Circuit) -- 3.6 Conclusions -- Nomenclature -- Subscripts -- Greek Symbols -- Abbreviations -- References -- Chapter 4 Nanofiltration Membrane Characterization -- 4.1 Introduction -- 4.2 Structural Characteristics -- 4.2.1 Microscopy -- 4.2.2 Pore Size -- 4.2.2.1 Solvent Permeation and Rejection of Probe Solutes -- 4.2.2.2 Spectroscopic and Scattering Methods -- 4.2.3 Thickness and Morphology of the Active Layer -- 4.2.4 Surface Characteristics -- 4.2.4.1 Atomic Force Microscopy (AFM) -- 4.2.4.2 Contact Angle -- 4.2.5 Membrane Swelling and Solvent Uptake -- 4.2.6 Chemical Structure -- 4.2.6.1 Attenuated Total Reflection-Fourier Transform InfraRed Spectroscopy (ATR-FTIR) -- 4.2.6.2 X‐ray Photoelectron Spectroscopy (XPS) -- 4.2.6.3 Rutherford Backscattering Spectroscopy (RBS) -- 4.2.7 Mechanical Properties -- 4.3 Charge Related Parameters -- 4.3.1 Electrokinetic Measurements -- 4.3.2 Titration and Ion Exchange -- 4.3.3 Membrane Potential -- 4.3.4 Electrochemical Impedance Spectroscopy -- 4.4 Nanofiltration Membranes for Nonaqueous Systems.
4.5 Conclusions -- Nomenclature -- Greek Symbols -- Abbreviations -- References -- Chapter 5 Modeling Nanofiltration of Electrolyte Solutions -- 5.1 Introduction -- 5.2 Basic Equations and Concepts -- 5.2.1 Derivation of Equations -- 5.2.1.1 Single Salts -- 5.2.1.2 Trace Ions -- 5.2.2 Solution of Transport Equations for Macroscopically Homogeneous Membranes: Single Salts and Trace Ions -- 5.2.2.1 Spiegler-Kedem Approximation -- 5.2.2.2 Trace Ions -- 5.2.3 Specification of Phenomenological Coefficients Within the Scope of a Model of Straight, Narrow Capillaries -- 5.3 Nanopore Models of NF -- 5.3.1 Steric Exclusion and Hindrance -- 5.3.2 Local Equilibrium Partitioning Mechanisms -- 5.3.2.1 Donnan Exclusion -- 5.3.2.2 Superposition of Donnan Exclusion and Steric Hindrance/Exclusion -- 5.3.2.3 Dielectric Exclusion -- 5.4 Solution‐Diffusion‐Electromigration Models of Nanofiltration -- 5.4.1 An Analytical Solution to Transport of Three Ions with Different Charges -- 5.4.2 Determining Single‐Ion Permeances Using NF with Trace Ions -- 5.4.3 "Under‐Osmotic" Operation -- 5.4.4 Deviations from Local Electrical Neutrality in Ultrathin Barrier Layers -- 5.5 Conclusions -- Acknowledgements -- Nomenclature -- Greek Symbols -- Abbreviations -- References -- Chapter 6 Chemical Speciation Effects in Nanofiltration Separation -- 6.1 Introduction -- 6.2 Chemical Speciation -- 6.2.1 Effect of Ionic Strength on Chemical Speciation -- 6.2.2 Effects of Temperature and Pressure on Chemical Speciation -- 6.3 Review of Effects of Solute Size, Charge, and Concentration on Rejection by NF Membranes -- 6.4 Solution Processes Influencing Speciation and Rejection -- 6.4.1 Acid-Base Transformations -- 6.4.2 Complexation -- 6.4.3 Precipitation -- 6.4.4 Oxidation-Reduction -- 6.4.5 Adsorption -- 6.5 Effect of Concentration Polarization on Speciation and Rejection.
6.5.1 Exceedance of Solubility Product and Precipitation of Solids -- 6.5.2 Aggregation of Macromolecules and Precipitated Solids -- 6.5.3 Formation of Alternative Complexes and Multinuclear Species -- 6.6 Conclusions -- Nomenclature and Symbols -- Abbreviations -- References -- Chapter 7 Fouling in Nanofiltration -- 7.1 Introduction -- 7.2 Fouling Characterization -- 7.2.1 Flux Measurement and Fouling Protocols -- 7.2.1.1 Membrane Compaction -- 7.2.1.2 Variation of Membrane Permeability with Solution Chemistry -- 7.2.1.3 Fouling Study Protocols -- 7.2.2 Normalization of Membrane Performance -- 7.2.3 Water Fouling Potential -- 7.2.3.1 Water Analysis -- 7.2.3.2 Silt Density Index (SDI) -- 7.2.3.3 Modified Fouling Index (MFI0.45) -- 7.2.3.4 Modified Fouling Index UF (MFI‐UF) -- 7.2.3.5 Biofilm Formation Rate (BFR) -- 7.2.4 Membrane Autopsy -- 7.3 Fouling Mechanisms -- 7.3.1 Concentration Polarization (CP) -- 7.3.2 Osmotic Pressure -- 7.3.3 Solute Adsorption -- 7.3.4 Gel Layer Formation -- 7.3.5 Cake Formation and Pore Blocking -- 7.3.6 Critical Flux and Operating Conditions -- 7.3.7 Additional Fouling Mechanisms -- 7.4 Organic Fouling -- 7.4.1 Introduction and Definition of Organic Fouling -- 7.4.2 Common Organic Foulants -- 7.4.3 Adsorption of Organic Matter -- 7.4.4 Gel Layer Formation -- 7.4.5 Cake Formation -- 7.4.6 Pore Blocking/Plugging -- 7.4.7 Impact of Solute-Solute Interactions and Salts -- 7.4.8 Impact of Fouling on Retention -- 7.5 Scaling -- 7.5.1 Introduction and Definition of Scaling -- 7.5.2 Solubility and Supersaturation of Salts -- 7.5.3 Common Scalants -- 7.5.3.1 Calcium Sulfate (CaSO4) Scale -- 7.5.3.2 Calcium Carbonate (CaCO3) Scale -- 7.5.3.3 Barium Sulfate (BaSO4) and Strontium Sulfate (SrSO4) Scale -- 7.5.3.4 Silica Scale -- 7.5.3.5 Calcium Phosphate Scale -- 7.5.4 Characterization of Scales.
7.5.5 Mechanisms of Scale Formation.
Record Nr. UNINA-9910554830603321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanofiltration : principles, applications, and new materials / / edited by Andrea Iris Schäfer, Anthony G. Fane
Nanofiltration : principles, applications, and new materials / / edited by Andrea Iris Schäfer, Anthony G. Fane
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2020]
Descrizione fisica 1 online resource (1242 pages)
Disciplina 660.284245
Soggetto topico Nanofiltration
ISBN 3-527-82497-9
3-527-82496-0
3-527-82498-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Foreword (Second Edition, 2020) -- Foreword (First Edition, 2005) -- Acknowledgements -- Dedication -- Introduction -- Part I Principles -- Chapter 1 History of Nanofiltration Membranes from 1960 to 1990 -- 1.1 Overview -- 1.2 Introduction -- 1.3 First‐Generation NF Membranes -- 1.3.1 Cellulose Acetate Asymmetric Membranes -- 1.3.2 Deficiencies in Cellulosic Membranes -- 1.3.3 Polyelectrolyte Complexes -- 1.3.4 Polyamide Membranes -- 1.3.5 Polysulfones and Other Polymer Membranes -- 1.4 Early Studies of Charged Reverse Osmosis (Hyperfiltration) Membranes -- 1.4.1 Dynamic Membranes -- 1.4.2 Polyelectrolyte Membranes -- 1.5 Early Models of NF Selectivity -- 1.6 Negative Salt Rejection -- 1.6.1 Solutions of One Electrolyte -- 1.6.2 Separation by Negative Salt Rejection -- 1.7 Early Development of Industrial NF: Ionic Modification of Asymmetric Cellulose Acetate -- 1.8 Early NF Composites -- 1.8.1 General -- 1.8.2 Plasma Polymerization -- 1.8.3 Graft Polymerization -- 1.9 NF Composites of the 1980s -- 1.9.1 Piperazineamide Membranes -- 1.9.2 Other NF Interfacially Produced Composites -- 1.9.3 Modification of RO Membrane Composites to Bring Them into the NF Range -- 1.10 Composites Produced by Noninterfacial Cross‐linking -- 1.10.1 Polyvinyl Alcohol Composites -- 1.10.2 Sulfonated Engineering Plastics as Selective Barriers -- 1.10.3 Polyethyleneimine -- 1.11 Chemically Stable NF Membranes -- 1.11.1 Chemically Stable Polymeric Asymmetric Membranes -- 1.11.2 Oxidant and pH‐Stable Composite Membranes -- 1.11.3 Solvent‐Stable NF Composites -- 1.11.4 Chemically Stable Inorganic NF and Polymeric/Inorganic Hybrids -- 1.12 Conclusions -- Abbreviations -- References -- Chapter 2 Nanofiltration Membrane Materials and Preparation -- 2.1 General Introduction -- 2.2 Phase Inversion -- 2.2.1 Introduction.
2.2.2 Basic Principles -- 2.2.3 Polymer Type -- 2.2.4 Casting Solution -- 2.2.4.1 Polymer Concentration -- 2.2.4.2 Addition of Volatile Cosolvents -- 2.2.4.3 Addition of Nonsolvents -- 2.2.4.4 Addition of Other Additives -- 2.2.5 Postcasting Evaporation -- 2.2.6 Coagulation Bath -- 2.2.7 Post‐treatment -- 2.2.7.1 Annealing -- 2.2.7.2 Cross‐linking -- 2.2.7.3 Drying -- 2.3 Interfacial Polymerization -- 2.3.1 Introduction -- 2.3.2 Support Materials -- 2.3.3 Monomers -- 2.3.3.1 Amines -- 2.3.3.2 Acyl Chlorides -- 2.3.3.3 Other Polymer Types -- 2.3.4 Monomer Concentrations and Reaction Time -- 2.3.5 Solvent -- 2.3.6 Additives -- 2.3.7 New Approaches -- 2.3.8 Post‐treatment -- 2.4 Coating -- 2.4.1 Introduction -- 2.4.2 Examples -- 2.5 Surface Modification -- 2.5.1 Introduction -- 2.5.2 Plasma Treatment -- 2.5.3 Organic Reactions -- 2.5.3.1 Covalent Linking of Monomers -- 2.5.3.2 Sulfonation -- 2.5.3.3 Nitration -- 2.5.4 Polymer Grafting -- 2.5.5 Photochemical Modification -- 2.6 Ceramic Membranes -- 2.6.1 Introduction -- 2.6.2 General Synthesis Procedure -- 2.6.2.1 Sol -- 2.6.2.2 Coating -- 2.6.2.3 Gel -- 2.6.2.4 Sintering -- 2.6.3 Membrane Types -- 2.6.3.1 Titania -- 2.6.3.2 Zirconia -- 2.6.3.3 Alumina -- 2.6.3.4 Silica -- 2.6.3.5 Mixed Oxides -- 2.6.3.6 Organic Doped Ceramic Membranes -- 2.6.4 Supports -- 2.6.5 Surface Modification -- 2.7 Hollow Fiber Preparation -- 2.7.1 Introduction -- 2.7.2 General Synthesis Procedure -- 2.7.3 Composite Hollow Fiber Membranes -- 2.8 Commercial and Novel (SR)NF Membranes -- 2.8.1 Commercial (SR)NF Membranes -- 2.8.2 Novel (SR)NF Membranes -- 2.9 Outlook -- Acknowledgements -- Abbreviations -- References -- Chapter 3 Nanofiltration Module Design and Operation -- 3.1 Introduction -- 3.1.1 Role of the Module -- 3.1.2 Concentration Polarization and Cross‐Flow -- 3.1.3 Fouling -- 3.2 Module Types and Characteristics.
3.2.1 Plate and Frame -- 3.2.2 Spiral Wound -- 3.2.3 Tubular -- 3.2.4 Hollow Fiber and Capillary -- 3.2.5 Others -- 3.2.5.1 Submerged Membranes -- 3.2.5.2 High Shear Devices -- 3.2.5.3 Laboratory Modules -- 3.2.6 Module Characteristics -- 3.3 Spiral Wound Module (SWM) - Design Features -- 3.3.1 Feed Channel Spacers -- 3.3.2 Modeling and Optimization -- 3.4 Strategies to Improve Control of Concentration Polarization -- 3.4.1 Process Limitation by Concentration Polarization -- 3.4.2 High Shear - Vibrating the Membrane -- 3.4.3 High Shear - Rotor/Stator Modules -- 3.4.4 Two‐Phase Flow -- 3.4.5 Unsteady Shear Comparison -- 3.5 System Design and Operation -- 3.5.1 System Configurations -- 3.5.2 Diafiltration -- 3.5.3 Reflux‐Recycle Cascade (Combining RO and NF) -- 3.5.4 Batch Operation - Energy Saving (Closed Circuit) -- 3.6 Conclusions -- Nomenclature -- Subscripts -- Greek Symbols -- Abbreviations -- References -- Chapter 4 Nanofiltration Membrane Characterization -- 4.1 Introduction -- 4.2 Structural Characteristics -- 4.2.1 Microscopy -- 4.2.2 Pore Size -- 4.2.2.1 Solvent Permeation and Rejection of Probe Solutes -- 4.2.2.2 Spectroscopic and Scattering Methods -- 4.2.3 Thickness and Morphology of the Active Layer -- 4.2.4 Surface Characteristics -- 4.2.4.1 Atomic Force Microscopy (AFM) -- 4.2.4.2 Contact Angle -- 4.2.5 Membrane Swelling and Solvent Uptake -- 4.2.6 Chemical Structure -- 4.2.6.1 Attenuated Total Reflection-Fourier Transform InfraRed Spectroscopy (ATR-FTIR) -- 4.2.6.2 X‐ray Photoelectron Spectroscopy (XPS) -- 4.2.6.3 Rutherford Backscattering Spectroscopy (RBS) -- 4.2.7 Mechanical Properties -- 4.3 Charge Related Parameters -- 4.3.1 Electrokinetic Measurements -- 4.3.2 Titration and Ion Exchange -- 4.3.3 Membrane Potential -- 4.3.4 Electrochemical Impedance Spectroscopy -- 4.4 Nanofiltration Membranes for Nonaqueous Systems.
4.5 Conclusions -- Nomenclature -- Greek Symbols -- Abbreviations -- References -- Chapter 5 Modeling Nanofiltration of Electrolyte Solutions -- 5.1 Introduction -- 5.2 Basic Equations and Concepts -- 5.2.1 Derivation of Equations -- 5.2.1.1 Single Salts -- 5.2.1.2 Trace Ions -- 5.2.2 Solution of Transport Equations for Macroscopically Homogeneous Membranes: Single Salts and Trace Ions -- 5.2.2.1 Spiegler-Kedem Approximation -- 5.2.2.2 Trace Ions -- 5.2.3 Specification of Phenomenological Coefficients Within the Scope of a Model of Straight, Narrow Capillaries -- 5.3 Nanopore Models of NF -- 5.3.1 Steric Exclusion and Hindrance -- 5.3.2 Local Equilibrium Partitioning Mechanisms -- 5.3.2.1 Donnan Exclusion -- 5.3.2.2 Superposition of Donnan Exclusion and Steric Hindrance/Exclusion -- 5.3.2.3 Dielectric Exclusion -- 5.4 Solution‐Diffusion‐Electromigration Models of Nanofiltration -- 5.4.1 An Analytical Solution to Transport of Three Ions with Different Charges -- 5.4.2 Determining Single‐Ion Permeances Using NF with Trace Ions -- 5.4.3 "Under‐Osmotic" Operation -- 5.4.4 Deviations from Local Electrical Neutrality in Ultrathin Barrier Layers -- 5.5 Conclusions -- Acknowledgements -- Nomenclature -- Greek Symbols -- Abbreviations -- References -- Chapter 6 Chemical Speciation Effects in Nanofiltration Separation -- 6.1 Introduction -- 6.2 Chemical Speciation -- 6.2.1 Effect of Ionic Strength on Chemical Speciation -- 6.2.2 Effects of Temperature and Pressure on Chemical Speciation -- 6.3 Review of Effects of Solute Size, Charge, and Concentration on Rejection by NF Membranes -- 6.4 Solution Processes Influencing Speciation and Rejection -- 6.4.1 Acid-Base Transformations -- 6.4.2 Complexation -- 6.4.3 Precipitation -- 6.4.4 Oxidation-Reduction -- 6.4.5 Adsorption -- 6.5 Effect of Concentration Polarization on Speciation and Rejection.
6.5.1 Exceedance of Solubility Product and Precipitation of Solids -- 6.5.2 Aggregation of Macromolecules and Precipitated Solids -- 6.5.3 Formation of Alternative Complexes and Multinuclear Species -- 6.6 Conclusions -- Nomenclature and Symbols -- Abbreviations -- References -- Chapter 7 Fouling in Nanofiltration -- 7.1 Introduction -- 7.2 Fouling Characterization -- 7.2.1 Flux Measurement and Fouling Protocols -- 7.2.1.1 Membrane Compaction -- 7.2.1.2 Variation of Membrane Permeability with Solution Chemistry -- 7.2.1.3 Fouling Study Protocols -- 7.2.2 Normalization of Membrane Performance -- 7.2.3 Water Fouling Potential -- 7.2.3.1 Water Analysis -- 7.2.3.2 Silt Density Index (SDI) -- 7.2.3.3 Modified Fouling Index (MFI0.45) -- 7.2.3.4 Modified Fouling Index UF (MFI‐UF) -- 7.2.3.5 Biofilm Formation Rate (BFR) -- 7.2.4 Membrane Autopsy -- 7.3 Fouling Mechanisms -- 7.3.1 Concentration Polarization (CP) -- 7.3.2 Osmotic Pressure -- 7.3.3 Solute Adsorption -- 7.3.4 Gel Layer Formation -- 7.3.5 Cake Formation and Pore Blocking -- 7.3.6 Critical Flux and Operating Conditions -- 7.3.7 Additional Fouling Mechanisms -- 7.4 Organic Fouling -- 7.4.1 Introduction and Definition of Organic Fouling -- 7.4.2 Common Organic Foulants -- 7.4.3 Adsorption of Organic Matter -- 7.4.4 Gel Layer Formation -- 7.4.5 Cake Formation -- 7.4.6 Pore Blocking/Plugging -- 7.4.7 Impact of Solute-Solute Interactions and Salts -- 7.4.8 Impact of Fouling on Retention -- 7.5 Scaling -- 7.5.1 Introduction and Definition of Scaling -- 7.5.2 Solubility and Supersaturation of Salts -- 7.5.3 Common Scalants -- 7.5.3.1 Calcium Sulfate (CaSO4) Scale -- 7.5.3.2 Calcium Carbonate (CaCO3) Scale -- 7.5.3.3 Barium Sulfate (BaSO4) and Strontium Sulfate (SrSO4) Scale -- 7.5.3.4 Silica Scale -- 7.5.3.5 Calcium Phosphate Scale -- 7.5.4 Characterization of Scales.
7.5.5 Mechanisms of Scale Formation.
Record Nr. UNINA-9910830097903321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui