An algebraic geometric approach to separation of variables / Konrad Schöbel
| An algebraic geometric approach to separation of variables / Konrad Schöbel |
| Autore | Schöbel, Konrad |
| Pubbl/distr/stampa | Wiesbaden, : Springer spektrum, 2015 |
| Descrizione fisica | XII, 138 p. : ill. ; 24 cm |
| Soggetto topico |
35-XX - Partial differential equations [MSC 2020]
58D27 - Moduli problems for differential geometric structures [MSC 2020] 05E05 - Symmetric functions and generalizations [MSC 2020] 53C21 - Methods of global Riemannian geometry, including PDE methods; curvature restrictions [MSC 2020] 53A60 - Differential geometry of webs [MSC 2020] 58J70 - Invariance and symmetry properties for PDEs on manifolds [MSC 2020] 14M12 - Determinantal varieties [MSC 2020] 35R01 - PDEs on manifolds [MSC 2020] |
| Soggetto non controllato |
Algebraic curvature tensors
Deligne-Mumford moduli spaces Killing tensors Operads Stasheff polytopes Stäckel systems |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0113926 |
Schöbel, Konrad
|
||
| Wiesbaden, : Springer spektrum, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
An algebraic geometric approach to separation of variables / Konrad Schöbel
| An algebraic geometric approach to separation of variables / Konrad Schöbel |
| Autore | Schöbel, Konrad |
| Pubbl/distr/stampa | Wiesbaden, : Springer spektrum, 2015 |
| Descrizione fisica | XII, 138 p. : ill. ; 24 cm |
| Soggetto topico |
05E05 - Symmetric functions and generalizations [MSC 2020]
14M12 - Determinantal varieties [MSC 2020] 35-XX - Partial differential equations [MSC 2020] 35R01 - PDEs on manifolds [MSC 2020] 53A60 - Differential geometry of webs [MSC 2020] 53C21 - Methods of global Riemannian geometry, including PDE methods; curvature restrictions [MSC 2020] 58D27 - Moduli problems for differential geometric structures [MSC 2020] 58J70 - Invariance and symmetry properties for PDEs on manifolds [MSC 2020] |
| Soggetto non controllato |
Algebraic curvature tensors
Deligne-Mumford moduli spaces Killing tensors Operads Stasheff polytopes Stäckel systems |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00113926 |
Schöbel, Konrad
|
||
| Wiesbaden, : Springer spektrum, 2015 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
An algebraic geometric approach to separation of variables / Konrad Schöbel
| An algebraic geometric approach to separation of variables / Konrad Schöbel |
| Autore | Schöbel, Konrad |
| Edizione | [Wiesbaden : Springer spektrum, 2015] |
| Pubbl/distr/stampa | XII, 138 p., : ill. ; 24 cm |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Soggetto topico |
35-XX - Partial differential equations [MSC 2020]
58D27 - Moduli problems for differential geometric structures [MSC 2020] 05E05 - Symmetric functions and generalizations [MSC 2020] 53C21 - Methods of global Riemannian geometry, including PDE methods; curvature restrictions [MSC 2020] 53A60 - Differential geometry of webs [MSC 2020] 58J70 - Invariance and symmetry properties for PDEs on manifolds [MSC 2020] 14M12 - Determinantal varieties [MSC 2020] 35R01 - PDEs on manifolds [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-SUN0113926 |
Schöbel, Konrad
|
||
| XII, 138 p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||