top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Knots, Low-Dimensional Topology and Applications : Knots in Hellas, International Olympic Academy, Greece, July 2016 / / edited by Colin C. Adams, Cameron McA. Gordon, Vaughan F.R. Jones, Louis H. Kauffman, Sofia Lambropoulou, Kenneth C. Millett, Jozef H. Przytycki, Renzo Ricca, Radmila Sazdanovic
Knots, Low-Dimensional Topology and Applications : Knots in Hellas, International Olympic Academy, Greece, July 2016 / / edited by Colin C. Adams, Cameron McA. Gordon, Vaughan F.R. Jones, Louis H. Kauffman, Sofia Lambropoulou, Kenneth C. Millett, Jozef H. Przytycki, Renzo Ricca, Radmila Sazdanovic
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XII, 476 p. 319 illus., 56 illus. in color.)
Disciplina 512
514.2
Collana Springer Proceedings in Mathematics & Statistics
Soggetto topico Algebra
Geometry
Topology
Discrete mathematics
Biomathematics
Statistical physics
Discrete Mathematics
Mathematical and Computational Biology
Statistical Physics and Dynamical Systems
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto David Futer, Efstratia Kalfagianni, and Jessica S. Purcell, A survey of hyperbolic knot theory -- Colin Adams, Spanning surfaces for hyperbolic knots in the 3-sphere -- Vaughan F.R. Jones, On the construction of knots and links from Thompson’s groups -- Louis H. Kauffman, Virtual knot theory and virtual knot cobordism -- J\’ozef H. Przytycki, Knot Theory: from Fox 3-colorings of links to Yang-Baxter homology and Khovanov homology -- W. Edwin Clark and Masahico Saito, Algebraic and computational aspects of quandle 2-cocycle invariants -- Sam Nelson, A Survey of Quantum Enhancements -- Nafaa Chbili, From alternating to quasi-alternating links -- Alexander Stoimenov, Hoste’s conjecture and roots of the Alexander polynomial -- Nancy Scherich, A survey of grid diagrams and a proof of Alexander’s theorem -- Louis H. Kauffman and Sofia Lambropoulou, Extending the classical skein -- Maria Chlouveraki, From the framisation of the Temperley—Lieb algebra to the Jones polynomial: an algebraic approach -- Hoel Queffelec and Antonio Sartori, A note on the ${\mathfrak gl}_{m|n}$ link invariants and the HOMFLY–PT polynomial -- Mauro Spera, On the geometry of some braid group representations -- Celeste Damiani, Towards a version of Markov’s theorem for ribbon torus-links in ${\Bbb R}^4$ -- Ioannis Diamantis, An alternative basis for the Kauffman bracket skein module of the solid torus via braids -- Bostjan Gabrovsek and Eva Horvat, Knot invariants in lens spaces -- Andrey M. Mikhovich, $QR$-presentations, schematization, conjurings and identity theorem for pro-$p$-groups -- Neslihan G\”ug\”umcu, Louis H. Kauffman, and Sofia Lambropoulou, A survey on knotoids, braidoids and their applications -- Rachel E. Ashley and Neil Osheroff, Regulation of DNA Topology by Topoisomerases: Mathematics at the Molecular Level -- Eleni Panagiotou, Topological entanglement and its relation to polymer material properties -- Stathis Antoniou, Louis H. Kauffman, and Sofia Lambropoulou, Topological surgery in the small and in the large.
Record Nr. UNINA-9910338251003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
LinKnot : knot theory by computer / / Slavik Jablan, Radmila Sazdanovic
LinKnot : knot theory by computer / / Slavik Jablan, Radmila Sazdanovic
Autore Jablan Slavik V
Edizione [1st ed.]
Pubbl/distr/stampa Hackensack, NJ, : World Scientific, c2007
Descrizione fisica 1 online resource (500 p.)
Disciplina 514.2242
Altri autori (Persone) SazdanovicRadmila
Collana K & E series on knots and everything
Soggetto topico Knot theory - Data processing
Link theory - Data processing
ISBN 1-281-91198-4
9786611911980
981-277-224-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; 1. Notation of Knots and Links; 1.1 Basic graph theory; 1.2 Shadows of KLs; 1.2.1 Gauss and Dowker code; 1.3 KL diagrams; 1.4 Reidemeister moves; 1.5 Conway notation; 1.6 Classification of KLs; 1.7 LinKnot functions and KL notation; 1.8 Rational world and KL invariants; 1.8.1 Chirality of rational KLs; 1.9 Unlinking number and unlinking gap; 1.10 Prime and composite KLs; 1.11 Non-invertible KLs; 1.11.1 Tangle types; 1.11.2 Non-invertible pretzel knots; 1.11.3 Non-invertible arborescent knots; 1.11.4 Non-invertible polyhedral knots; 1.12 Reduction of R-tangles
1.12.1 KLs with unlinking number one1.13 Braids; 1.13.1 KLs and braids; 1.14 Braid family representatives; 1.14.1 Applications of minimum braids and braid family representatives; 1.15 More KL invariants; 1.16 Borromean links; 2. Recognition and Generation of Knots and Links; 2.1 Recognition of KLs; 2.1.1 Group of KL; 2.2 Polynomial invariants; 2.3 Vassiliev invariants; 2.4 Experimenting with KLs; 2.5 Derivation and classification of KLs; 2.6 Basic polyhedra and polyhedral KLs; 2.7 Basic polyhedra and non-algebraic tangles; 2.7.1 Generalized tangles; 2.7.2 n-tangles and basic polyhedra
2.7.3 Non-algebraic tangle compositions and component algebra2.8 KL tables; 2.8.1 Non-alternating and almost alternating KLs; 2.9 Projections of KLs and chirality; 2.10 Families of undetectable KLs; 2.10.1 Detecting chirality of KLs by polynomial invariants; 2.11 A dream- new KL tables; 3. History of Knot Theory and Applications of Knots and Links; 3.1 History of knot theory; 3.2 Mirror curves; 3.2.1 Tamil treshold designs; 3.2.2 Tchokwe sand drawings; 3.2.3 Construction of mirror curves; 3.2.4 Enumeration of mirror curves; 3.2.5 Lunda designs; 3.2.6 Polyominoes
3.2.6.1 Lunda polyominoes and Lunda animals3.2.7 KLs and mirror curves; 3.2.8 Mirror curves on di erent surfaces; 3.2.9 Mirror curves in art; 3.2.10 KLs and self-avoiding curves; 3.3 KLs and fullerenes; 3.3.1 General fullerenes, graphs, symmetry and isomers; 3.3.2 5/6 fullerenes; 3.3.3 Knot theory and fullerenes; 3.3.4 Nanotubes, conical and biconical fullerenes and their symmetry; 3.3.5 Fullerenes on other surfaces; 3.4 KLs and logic; 3.5 Waveforms; 3.6 Knot automata; Bibliography; Index
Record Nr. UNINA-9910819145203321
Jablan Slavik V  
Hackensack, NJ, : World Scientific, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui