top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational Intelligence in Internet of Agricultural Things / / edited by M. G. Sumithra, Malathy Sathyamoorthy, M. Manikandan, Rajesh Kumar Dhanaraj, Mariya Ouaissa
Computational Intelligence in Internet of Agricultural Things / / edited by M. G. Sumithra, Malathy Sathyamoorthy, M. Manikandan, Rajesh Kumar Dhanaraj, Mariya Ouaissa
Autore Sumithra M. G
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (464 pages)
Disciplina 006.3
Altri autori (Persone) SathyamoorthyMalathy
ManikandanM
DhanarajRajesh Kumar
OuaissaMariya
Collana Studies in Computational Intelligence
Soggetto topico Computational intelligence
Artificial intelligence
Agriculture
Computational Intelligence
Artificial Intelligence
ISBN 9783031674501
3031674502
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- 1: Computational Intelligence and Internet of Things in the Agriculture Sector: An Introduction. -- 2: Role of Big Data Analytics in Intelligent Agriculture. -- 3: Machine learning-based remote monitoring and predictive analytics system for apple harvest storage: A statistical model based approach. -- 4: Revolutionizing Agriculture: Integrating IoT Cloud, And Machine Learning for Smart Farm Monitoring and Precision Agriculture. -- 5: Impact of Advanced Sensing Technologies in Agriculture with Soil, Crop, Climate and Farmland-based approaches using Internet of Things. -- 6: An analytical approach and concept mapping of agricultural issues using deep learning techniques. -- 7: Explainable AI for next generation Agriculture - Current Scenario and Future Prospects. -- 8: Barriers to implementing computational intelligence-based agriculture system. -- 9: Agri-Chain: A Blockchain-Empowered Smart Solution for Agricultural Industry. -- 10: Exploiting Internet of Things and AI-Enabled for Real-Time Decision Support in Precision Farming Practices. -- 11: Advancing Plant Disease Detection with Hybrid Models: Vision Transformer and CNN-Based Approaches. -- 12: Optimizing Agricultural Risk Management with Hybrid Block-chain and Fog Computing Architectures for Secure and Efficient Data Handling. -- 13: Innovating with Quantum Computing Approaches in Block-chain for Enhanced Security and Data Privacy in Agricultural IoT Systems. -- 14: Implementing Fog Computing in Precision Agriculture for Real-time Soil Health Monitoring and Data Management. -- 15: Empowering Farmers: An AI-Based Solution for Agricultural Challenges. -- 16: Artificial Intelligence in Agriculture: Potential Applications and Future Aspects. -- 17: Case study on Smart irrigation using Internet of Things and XAI Techniques.
Record Nr. UNINA-9910882897703321
Sumithra M. G  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computer Vision in Smart Agriculture and Crop Management
Computer Vision in Smart Agriculture and Crop Management
Autore Dhanaraj Rajesh Kumar
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (402 pages)
Disciplina 338.10285
Altri autori (Persone) BalusamyBalamurugan
SamuelPrithi
SathyamoorthyMalathy
BashirAli Kashif
Soggetto topico Precision farming
Sustainable agriculture
ISBN 9781394186662
1394186665
9781394186686
1394186681
9781394186679
1394186673
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Computer Vision-Based Innovations for Smart Agriculture and Crop Surveillance: Evolution, Trends, and Future Challenges -- 1.1 Introduction -- 1.2 Artificial Intelligence in Agriculture -- 1.3 Evolution of Smart Agriculture -- 1.4 AI Technology Trends in Computer Vision -- 1.5 Benefits of Artificial Intelligence in Agriculture -- 1.5.1 Improving the Whole Supply Chain -- 1.5.2 Agricultural Robotics -- 1.5.3 Policy, Governance and Market Access -- 1.5.4 Early Warning System -- 1.5.5 Food Safety and Traceability -- 1.5.6 Financial Inclusion and Risk Management -- 1.5.7 Capacity Building and Empowerment -- 1.5.8 Growth Driven by IoT -- 1.5.9 Image-Dependent Insight Generation -- 1.5.10 Identification of Optimal Mix for Agronomic Products -- 1.5.11 Monitoring of Crops and Soil Health -- 1.5.12 Automation Techniques in Irrigation and Enabling Farmers -- 1.5.13 Drones: The New Buzz in AI-Driven Agriculture -- 1.6 Precision Farming -- 1.7 Future Challenges -- 1.8 Conclusion -- References -- Chapter 2 Cyber Biosecurity Solutions for Protecting Smart Agriculture and Precision Farming
Record Nr. UNINA-9911019976603321
Dhanaraj Rajesh Kumar  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Ethical Decision-Making Using Artificial Intelligence
Ethical Decision-Making Using Artificial Intelligence
Autore Juneja Sapna
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (425 pages)
Disciplina 174/.90063
Altri autori (Persone) DhanarajRajesh Kumar
JunejaAbhinav
SathyamoorthyMalathy
ShaikhAsadullah
Soggetto topico Artificial intelligence - Moral and ethical aspects
ISBN 1-394-27531-5
1-394-27530-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Standards, Policies, Ethical Guidelines and Governance in Artificial Intelligence: Insights on the Financial Sector -- 1.1 Introduction -- 1.2 Chatbots in the Financial Industry -- 1.3 Background of the Study -- 1.4 Literature Review -- 1.5 Understanding Bias in Customer Service Chatbots -- 1.5.1 Categorizing Biases in Financial Chatbots -- 1.5.2 Sources and Origins of Bias in Financial Chatbots -- 1.5.3 User Feedback and Bias Detection -- 1.5.4 The Role of Explainability in Unveiling Bias -- 1.6 Impact of Bias in Financial Chatbot Interactions -- 1.6.1 Customer Trust and Satisfaction -- 1.6.2 Perpetuation of Inequalities -- 1.6.3 Reputational Risks for Financial Institutions -- 1.6.4 Regulatory Compliance Challenges -- 1.6.5 Implications for Brand Image -- 1.7 Strategies for Mitigating Bias in Financial Customer Service Chatbots -- 1.7.1 Diverse and Representative Training Data -- 1.7.2 Continuous Monitoring and Iterative Improvement -- 1.7.3 Explainability Features for User Trust -- 1.7.4 Inclusive User Testing -- 1.7.5 Ethical Guidelines and Governance -- 1.7.6 Collaborative Partnerships with Ethical AI Experts -- 1.8 Ethical Considerations and Transparency in Financial Chatbot Firms -- 1.9 Future Directions and Recommendations -- 1.10 Conclusion -- References -- Chapter 2 Domain-Specific AI Algorithms and Models in Decision-Making: An Overview -- 2.1 Introduction -- 2.1.1 Overview of the Role of AI in Decision Making -- 2.1.1.1 The Emergence of Artificial Intelligence: How it is Changing Decision-Making in Several Domains of Economics -- 2.1.1.2 Putting the Power of Artificial Intelligence to Work in a Particular Field -- 2.1.1.3 The AI-Assisted Decision-Making Process -- 2.1.1.4 Benefits and Future of AI-Powered Decision-Making.
2.1.2 Importance of Domain-Specific Approaches -- 2.1.2.1 Advantages of Domain-Specific AI -- 2.1.2.2 Instances of Domain-Specific AI in Action -- 2.1.2.3 General AI versus Domain-Specific AI: Powering Intelligent Decisions -- 2.2 Understanding Domain-Specific Decision Making -- 2.2.1 Bridging the Gap: Explainable AI for Effective Collaboration between Machine Learning and Domain Expertise -- 2.3 Building Blocks of AI for Decision-Making -- 2.3.1 Overview of AI Approaches -- 2.3.2 Machine Learning for Data-Driven Decision Generating -- 2.3.3 Knowledge-Based Systems for Rule-Based Decision-Making -- 2.3.4 Reinforcement Learning in Dynamic Environments -- 2.4 Domain-Specific AI: Revolutionizing Industries -- 2.4.1 Healthcare -- 2.4.1.1 The Importance of Patient-Centered Design in Regulating Large Language Models or Generative AI -- 2.4.1.2 XAI in Biomedicine: A Post-Pandemic Surge for Trustworthy AI in Healthcare Delivery -- 2.4.2 Finance -- 2.4.2.1 Explainable AI: A Path Toward Trustworthy and Ethical Applications of Machine Learning in Finance -- 2.4.2.2 Learning Machines, Evolving Markets: The Need for Adaptable Generative AI in Finance -- 2.4.3 Manufacturing -- 2.4.3.1 The Rise of Generative AI: A Call for Responsible AI Frameworks in MSME Manufacturing -- 2.4.3.2 Guiding the Future of Manufacturing: Responsible AI as a Cornerstone for Sustainable and Ethical Production -- 2.4.4 Transportation -- 2.4.4.1 Revolutionizing Urban Mobility: The Power of Machine Learning and AI in Smart City Transportation -- 2.4.4.2 AI Revolutionizes Transportation: Boosting Efficiency, Safety, and New Business Opportunities -- 2.4.5 Agriculture -- 2.4.5.1 Cultivating a Sustainable Future: How AI and Big Data are Revolutionizing Precision Agriculture.
2.4.5.2 AI in the Fields: From Precision Irrigation to Smart Robots, How Artificial Intelligence Is Revolutionizing Agribusiness -- 2.4.6 Retail -- 2.4.6.1 The Generative Retail Revolution: How AI is Personalizing Customer Experience, Optimizing Inventory, and Driving Sales -- 2.4.6.2 The Future of Retail: Leveraging AI for Efficiency and Personalization while Navigating Data Privacy and Ethical Challenges -- 2.4.7 Domain-Specific AI: A Comparative Analysis -- 2.5 Ethical and Societal Implications -- 2.6 Future Directions and Emerging Trends -- 2.7 Conclusion -- References -- Chapter 3 Role of AI in Decision-Making . A Comprehensive Study -- 3.1 Introduction -- 3.2 Need of AI-Based Decision-Making System -- 3.3 Major Obstacle for AI-Based Decision-Making System -- 3.4 Applications of AI-Based Decision-Making System -- 3.5 Case Study: AIDMS for Age-Related Macular Degeneration (AMD) -- 3.6 Conclusion and Future Directions -- References -- Chapter 4 Ethical Challenges in AI Decision-Making: From the User's Perspective -- 4.1 Introduction -- 4.1.1 Ethical Principles in AI -- 4.1.2 The Role of Data in AI Decision-Making -- 4.2 Public Perception towards AI -- 4.3 Ethical Dilemmas of AI -- 4.4 Emerging Issues that are Prevailing in the Current World -- 4.4.1 Case Studies -- 4.4.2 Collaboration and Stakeholder Involvement -- 4.5 Future Considerations -- 4.5.1 Conclusion -- References -- Chapter 5 Ethical Decision-Making in Yoga Posture Detection through AI: Fostering Responsible Technology Integration -- 5.1 Introduction -- 5.1.1 About Yoga -- 5.1.1.1 Advantages and Disadvantages of Yoga -- 5.1.2 Posture Detection System -- 5.1.2.1 Components of Posture Detection System -- 5.1.2.2 Process of Posture Detection System -- 5.1.2.3 Applications of Posture Detection System -- 5.1.2.4 Advantages and Disadvantages of Posture Detection System.
5.1.3 Ethical Decision-Making in Yoga Posture Detection through AI -- 5.2 Literature Review -- 5.3 Technologies Used -- 5.3.1 MediaPipe -- 5.3.2 OpenCV (Open-Source Computer Vision Library) -- 5.4 Dataset Used -- 5.5 Methodology -- 5.5.1 How Does It Work? -- 5.6 Conclusion -- References -- Chapter 6 Ethical AI: A Design of an Integrated Framework towards Intelligent Decision-Making in Stock Control -- 6.1 Introduction -- 6.1.1 The Effect of Artificial Intelligence on Controlling Inventory -- 6.1.2 Process of Evolution and Development in Stock Control -- 6.2 Benefits and Impact of AI on Inventory Control -- 6.2.1 Moral Considerations in AI-Primarily Based Selection Making -- 6.3 Best Practices for Implementing AI for Stock Management in E-Commerce -- 6.3.1 Consideration in Statistics and Statistics Safety -- 6.3.2 How AI Enables Stock Administration for Important Corporations -- 6.3.3 Synthetic Intelligence in Inventory Administration: Destiny Styles and Extension -- 6.3.4 Inventory Control with Predictive Renovation -- 6.4 Formulation of Proposed Model -- 6.4.1 Framework Discussion -- 6.4.2 Assumptions and Notations -- 6.4.3 Proposed Mathematical Model -- 6.4.4 Example -- 6.4.5 Sensitivity Analysis -- 6.5 Conclusion -- References -- Chapter 7 Integrating Machine Learning and Data Ethics: Frameworks for Intelligent Ethical Decision-Making -- 7.1 Introduction -- 7.2 Concept of Machine Learning and Data Ethics -- 7.3 Importance of ML and AI in Design Making -- 7.4 Defining an Intelligent Decision-Making Support System -- 7.5 Transformation of the Decision-Making System to Intelligent Decision-Making Support -- 7.6 Architecture Framework -- 7.6.1 Components of the IDSS Architecture -- 7.7 Conceptual Framework -- 7.7.1 Core Concepts -- 7.7.2 Components of the Conceptual Framework -- 7.7.3 Block Diagram of the Conceptual Framework.
7.7.4 Principles of Framework -- 7.7.4.1 Tools Used in IDMSS -- 7.7.4.2 Data Processing Tools -- 7.7.4.3 Machine Learning Frameworks -- 7.7.4.4 Cloud Computing Platforms -- 7.7.5 Analyzing Different Tools -- 7.7.6 Data Processing Tools -- 7.7.7 Machine Learning Frameworks -- 7.7.8 Convolutional Neural Networks (CNNs) -- 7.7.9 Recurrent Neural Networks (RNNs) -- 7.7.10 Cloud Computing Platforms -- 7.8 Cloud-Based Scalability with Auto Scaling -- 7.9 Case Study of Complex Problem Using Framework -- 7.10 Algorithm and Coding Analysis -- 7.11 Results and Impact Analysis -- 7.12 Conclusion -- References -- Chapter 8 Importance of Human Loop in AI-Based Decision-Making: Strengthening the Ethical Perspective -- 8.1 Introduction -- 8.1.1 Human-in-the-Loop -- 8.2 Human Interaction with AI Platform -- 8.3 Human and Machine Ethical Annotation -- 8.4 Exploring AI with Human-in-the-Loop Technique -- 8.4.1 AI-Ethical Module -- 8.4.2 Role of HITL in Ethical Decision-Making -- 8.5 Creating Ethical AI Using HTIL Technique -- 8.5.1 Distributed Ethical Decision System -- 8.5.2 Viability and Advantages of Decision-Making Using Ethical AI -- 8.5.3 Problem Statement -- 8.6 Conclusion -- References -- Chapter 9 AI in Finance and Business: Novel Method for Human Resource Recommendation Using Improved Gradient Boosting Tree Model -- 9.1 Introduction -- 9.2 Literature Review -- 9.2.1 Deep Learning Approach -- 9.2.2 Gradient Boosting Tree -- 9.2.3 Convolutional Neural Network -- 9.2.3.1 Layer of Convolution -- 9.2.3.2 Pool Layer -- 9.2.3.3 Active Layer -- 9.2.3.4 Full Connection Layer -- 9.2.4 Deeper Learning Organizational Techniques -- 9.3 The Proposed Model -- 9.4 Evaluation of the Impact of the Technology -- 9.4.1 Data Set -- 9.4.1.1 Evaluation Criteria -- 9.5 Conclusion -- References -- Chapter 10 Comprehensive View from Ethics to AI Ethics: With Multifaceted Dimensions.
10.1 Introduction.
Record Nr. UNINA-9911020433703321
Juneja Sapna  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Networked Sensing Systems
Networked Sensing Systems
Autore Dhanaraj Rajesh Kumar
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (408 pages)
Disciplina 681/.2
Altri autori (Persone) SathyamoorthyMalathy
SBalasubramaniam
KadrySeifedine
Soggetto topico Sensor networks
ISBN 9781394310890
1394310897
9781394310876
1394310870
9781394310883
1394310889
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911019111403321
Dhanaraj Rajesh Kumar  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui