top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Nanoscale MOSFET Architectures : Current Trends and Future Perspectives
Advanced Nanoscale MOSFET Architectures : Current Trends and Future Perspectives
Autore Biswas Kalyan
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (339 pages)
Disciplina 621.3815/284
Altri autori (Persone) SarkarAngsuman
Soggetto topico Metal oxide semiconductor field-effect transistors
Nanotechnology
ISBN 9781394188956
1394188951
9781394188970
1394188978
9781394188987
1394188986
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- Chapter 1 Emerging MOSFET Technologies -- 1.1 Introduction: Transistor Action -- 1.2 MOSFET Scaling -- 1.3 Challenges in Scaling the MOSFET -- 1.4 Emerging MOSFET Architectures -- 1.4.1 Tunnel FET -- 1.4.2 Nanowire FET -- 1.4.3 Nanosheet FET -- 1.4.4 Negative Capacitance FET -- 1.4.5 Graphene FET -- 1.4.6 III-V Material‐based MOSFETS -- 1.4.7 HEMT -- 1.4.8 Strain Engineered MOSFETs -- 1.5 Organization of this Book -- References -- Chapter 2 MOSFET: Device Physics and Operation -- 2.1 Introduction to MOSFET -- 2.2 Advantages of MOSFET -- 2.3 Applications of MOSFETs -- 2.4 Types of MOSFETs -- 2.4.1 P‐Channel and N‐Channel MOSFET -- 2.4.2 MOSFET Working Operation -- 2.5 Band Diagram of MOSFET -- 2.5.1 Accumulation Layer -- 2.5.2 Depletion Layer -- 2.5.3 Inversion Layer -- 2.6 MOSFET Regions of Operation -- 2.6.1 N‐Channel Depletion MOSFET -- 2.6.2 P‐Channel depletion MOSFET -- 2.6.3 Operating Regions of P‐Channel Depletion MOSFET -- 2.6.4 Enhancement MOSFET -- 2.6.5 N‐Channel Enhancement MOSFET -- 2.6.6 P‐Channel Enhancement MOSFET -- 2.7 Scaling of MOSFET -- 2.7.1 Types of Scaling -- 2.8 Short‐channel Effects -- 2.8.1 Drain‐induced Barrier Lowering -- 2.8.2 Gate‐induced Drain Leakage -- 2.9 Body Bias Effect -- 2.9.1 Salient Feature of Body Bias -- 2.9.2 Significance of Body Bias -- 2.9.3 Body Bias Verification -- 2.10 Advancement of MOSFET Structures -- References -- Chapter 3 High‐κ Dielectrics in Next Generation VLSI/Mixed Signal Circuits -- 3.1 Introduction to Gate Dielectrics -- 3.2 High‐κ Dielectrics in Metal-Oxide-Semiconductor Capacitors -- 3.3 High‐κ Dielectrics in Metal Insulator Metal (MIM) Capacitors -- 3.3.1 High‐κ Dielectrics for Mixed Signal Circuits.
3.3.2 High‐κ Dielectrics as Stacks for Resistive Random Access Memories -- 3.4 MOSFETs Scaling and the Need of High‐κ -- 3.5 High‐κ Dielectrics in Next Generation Transistors -- 3.5.1 Planar-Nano Scale Field Effect Transistor -- 3.5.2 Silicon on Insulator -- 3.5.3 FIN Field Effect Transistor -- 3.5.4 Tunnel Field Effect Transistor -- 3.5.5 Negative Capacitance Field Effect Transistor -- References -- Chapter 4 Consequential Effects of Trap Charges on Dielectric Defects for MU‐G FET -- 4.1 Introduction -- 4.2 TID Effects Overview -- 4.3 Application Area of Device for TID Effect Analysis -- 4.4 Near the Earth: Trapped Radiation -- 4.5 Ionizing Radiation Effect in Silicon Dioxide (SiO2) -- 4.6 TID Effects in CMOS -- 4.7 TID Effects in Bipolar Devices -- 4.8 Understanding and Modeling a‐SiO2 Physics -- 4.9 Hydrogen (H2) Reaction with Trapped Charges at Insulator -- 4.10 Pre‐Existing Trap Density and their Respective Location -- 4.11 Use of High‐K Dielectric in MU‐G FET -- 4.12 Properties of Trap in the High‐K with Interfacial Layer -- 4.13 Trap Extraction Techniques -- 4.13.1 Capacitance Inversion Technique (CIT) -- 4.13.2 Charge Pumping Technique (CPT) -- 4.14 Conclusion -- References -- Chapter 5 Strain Engineering for Highly Scaled MOSFETs -- 5.1 Introduction -- 5.2 Simulation Approach -- 5.2.1 Strain Mapping -- 5.2.2 Mechanical Strain Modeling -- 5.2.3 Piezoresistivity Effect -- 5.2.4 Strain Induced Carrier Mobility -- 5.3 Case Study -- 5.3.1 Stress/Strain Engineering in Bulk‐Si FinFETs -- 5.3.1.1 Performance Analysis of Bulk‐Si FinFET -- 5.3.1.2 Effects of Fin Geometry Variations -- 5.3.2 Nanosheet -- 5.3.2.1 Impact of Mechanical Stress -- 5.3.2.2 Strained Engineering with Embedded Source/Drain Stressor -- 5.3.3 Extremely Thin SOI MOSFETs -- 5.4 Conclusions -- References.
Chapter 6 TCAD Analysis of Linearity Performance on Modified Ferroelectric Layer in FET Device with Spacer -- 6.1 Introduction -- 6.2 Simulation and Structure of Device -- 6.3 Results and Analysis -- 6.4 Conclusion -- Acknowledgment -- References -- Chapter 7 Electrically Doped Nano Devices: A First Principle Paradigm -- 7.1 Introduction -- 7.2 Electrical Doping -- 7.3 First Principle -- 7.3.1 DFT -- 7.3.2 NEGF -- 7.4 Molecular Simulation -- 7.5 Conclusion -- References -- Chapter 8 Tunnel FET: Principles and Operations -- 8.1 Introduction to Quantum Mechanics and Principles of Tunneling -- 8.2 Tunnel Field‐Effect Transistor -- 8.3 Challenges of Tunnel Field‐Effect Transistor -- 8.3.1 Low On‐state Current -- 8.3.2 Drain‐Induced Barrier Thinning Effect -- 8.3.3 Ambipolarity -- 8.3.4 Trap‐Assisted Tunneling -- 8.4 Techniques for Improving Electrical Performance of Tunnel Field‐Effect Transistor -- 8.4.1 Doping Engineering -- 8.4.2 Material Engineering -- 8.4.3 Geometry and Structure Engineering -- 8.5 Conclusion -- References -- Chapter 9 GaN Devices for Optoelectronics Applications -- 9.1 Introduction -- 9.2 Properties of GaN‐Based Material -- 9.2.1 Bandgap of GaN -- 9.2.2 Critical Electric Field of GaN -- 9.2.3 ON‐resistance of GaN -- 9.2.4 Two‐dimensional Electron Gas Formation at AlGaN/GaN Interface -- 9.3 GaN LEDs -- 9.3.1 Different Colors LEDs -- 9.3.2 μ‐LEDs -- 9.3.3 Micro‐LEDs with GaN‐based N‐doped Quantum Barriers -- 9.3.4 Blue Light Emission in GaN‐based LEDs -- 9.3.5 Characteristics -- 9.4 GaN Lasers -- 9.4.1 Blue Laser Diodes -- 9.5 GaN HEMTs for Optoelectronics -- 9.6 GaN Sensors -- References -- Chapter 10 First Principles Theoretical Design on Graphene‐Based Field‐Effect Transistors -- 10.1 Introduction -- 10.2 Graphene -- 10.2.1 Electronic Structure -- 10.2.2 Scanning Tunneling Microscopy -- 10.2.3 Electronic Transport.
10.3 Graphene/h‐BN Hybrid Structure -- 10.3.1 Atomic Structure -- 10.3.2 Structure and Energetics -- 10.3.3 Electronic Structure -- 10.3.4 Scanning Tunneling Microscopy -- 10.4 Conclusions -- Acknowledgments -- References -- Chapter 11 Performance Analysis of Nanosheet Transistors for Analog ICs -- 11.1 Introduction -- 11.2 Evolution of Nanosheet Transistors -- 11.2.1 Short‐Channel Effects and Their Mitigation -- 11.2.2 The FinFET Technology -- 11.2.3 Advent of Nanosheet Transistors -- 11.3 TCAD Modeling of Nanosheet Transistor -- 11.4 Transistor's Analog Performance Parameters -- 11.4.1 Transconductance -- 11.4.2 Output Conductance -- 11.4.3 Intrinsic Gain -- 11.4.4 Transconductance Efficiency -- 11.4.5 Discharge Time -- 11.4.6 Small Signal Capacitances and AC Model -- 11.4.7 Transit Frequency -- 11.5 Challenges and Perspectives of Modern Analog Design -- References -- Chapter 12 Low‐Power Analog Amplifier Design using MOS Transistor in the Weak Inversion Mode -- 12.1 Introduction -- 12.2 Review of the Theory of Weak Inversion Mode Operation of MOS Transistor -- 12.2.1 Drain Current Model in the Weak Inversion Mode -- 12.2.2 Concept of Inversion Coefficient -- 12.2.3 Parameter Extraction -- 12.2.3.1 Technology Current Constant Io -- 12.2.3.2 Sub‐threshold Swing Factor η -- 12.2.4 Small Signal Parameters in Weak Inversion Region -- 12.3 Design Steps for Transistor Sizing Using the IC -- 12.4 Design Examples -- 12.4.1 Design of a Common Source Amplifier -- 12.4.2 Single‐Ended Operational Transconductance Amplifier -- 12.4.2.1 Implementation and Simulation Result -- 12.5 Summary -- References -- Chapter 13 Ultra‐conductive Junctionless Tunnel Field‐effect Transistor‐based Biosensor with Negative Capacitance -- 13.1 Introduction -- 13.2 Importance of SS and ION/IOFF in Biosensing -- 13.3 Importance of Dopingless Source and Drain in High Conductivity.
13.4 Relation of Negative Capacitance with Non‐hysteresis and Effect on Biosensing -- 13.5 Variation of Source Material on Biosensing -- 13.6 Importance of Dual Gate and Ferroelectricity on Biosensing -- 13.7 Effect of Dual Material Gate on Biosensing -- References -- Chapter 14 Conclusion and Future Perspectives -- 14.1 Applications -- 14.1.1 Opportunities in Big Data -- 14.1.2 Fight Against Environment Change -- 14.1.3 Creation of Graphene -- 14.1.4 Nano Systems -- 14.1.5 Nanosensors -- 14.2 Some Recent Developments -- 14.3 Future Perspectives -- 14.4 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9911020043303321
Biswas Kalyan  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Low power VLSI design : fundamentals / / Angsuman Sarkar [and three others]
Low power VLSI design : fundamentals / / Angsuman Sarkar [and three others]
Autore Sarkar Angsuman
Pubbl/distr/stampa Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter Oldenbourg, , 2016
Descrizione fisica 1 online resource (xiv, 310 pages) : illustrations
Disciplina 621.39/5
Soggetto topico Integrated circuits - Very large scale integration
Low voltage integrated circuits
Soggetto genere / forma Electronic books.
ISBN 3-11-045545-5
3-11-045529-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Preface -- Contents -- 1. Introduction to Low Power Issues in VLSI -- 2. Scaling and Short Channel Effects in MOSFET -- 3. Advanced Energy-reduced CMOS Inverter Design -- 4. Advanced Combinational Circuit Design -- 5. Advanced Energy-reduced Sequential Circuit Design -- 6. Introduction to Memory Design -- 7. Analog Low Power VLSI Circuit Design -- Index
Record Nr. UNINA-9910466489503321
Sarkar Angsuman  
Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter Oldenbourg, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Low power VLSI design : fundamentals / / Angsuman Sarkar [and three others]
Low power VLSI design : fundamentals / / Angsuman Sarkar [and three others]
Autore Sarkar Angsuman
Pubbl/distr/stampa Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter Oldenbourg, , 2016
Descrizione fisica 1 online resource (xiv, 310 pages) : illustrations
Disciplina 621.39/5
Soggetto topico Integrated circuits - Very large scale integration
Low voltage integrated circuits
ISBN 3-11-045545-5
3-11-045529-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Preface -- Contents -- 1. Introduction to Low Power Issues in VLSI -- 2. Scaling and Short Channel Effects in MOSFET -- 3. Advanced Energy-reduced CMOS Inverter Design -- 4. Advanced Combinational Circuit Design -- 5. Advanced Energy-reduced Sequential Circuit Design -- 6. Introduction to Memory Design -- 7. Analog Low Power VLSI Circuit Design -- Index
Record Nr. UNINA-9910796578303321
Sarkar Angsuman  
Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter Oldenbourg, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Low power VLSI design : fundamentals / / Angsuman Sarkar [and three others]
Low power VLSI design : fundamentals / / Angsuman Sarkar [and three others]
Autore Sarkar Angsuman
Pubbl/distr/stampa Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter Oldenbourg, , 2016
Descrizione fisica 1 online resource (xiv, 310 pages) : illustrations
Disciplina 621.39/5
Soggetto topico Integrated circuits - Very large scale integration
Low voltage integrated circuits
ISBN 3-11-045545-5
3-11-045529-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Preface -- Contents -- 1. Introduction to Low Power Issues in VLSI -- 2. Scaling and Short Channel Effects in MOSFET -- 3. Advanced Energy-reduced CMOS Inverter Design -- 4. Advanced Combinational Circuit Design -- 5. Advanced Energy-reduced Sequential Circuit Design -- 6. Introduction to Memory Design -- 7. Analog Low Power VLSI Circuit Design -- Index
Record Nr. UNINA-9910826862003321
Sarkar Angsuman  
Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter Oldenbourg, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optical Switching : Device Technology and Applications in Networks
Optical Switching : Device Technology and Applications in Networks
Autore Nandi Dalia
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (387 pages)
Altri autori (Persone) NandiSandip
SarkarAngsuman
SarkarChandan Kumar
ISBN 1-119-81926-1
1-119-81924-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910585800303321
Nandi Dalia  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Proceedings of 3rd International Conference on 2019 Devices for Integrated Circuit (DevIC) : 23-24 March, 2019, Kalyani, Nadia, India / / edited by Dr. Angsuman Sarkar ; sponsored by Institute of Electrical and Electronics Engineers
Proceedings of 3rd International Conference on 2019 Devices for Integrated Circuit (DevIC) : 23-24 March, 2019, Kalyani, Nadia, India / / edited by Dr. Angsuman Sarkar ; sponsored by Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2019
Descrizione fisica 1 online resource (518 pages)
Disciplina 621.3815
Soggetto topico Integrated circuits
Semiconductors
ISBN 1-5386-6722-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910332516103321
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Proceedings of 3rd International Conference on 2019 Devices for Integrated Circuit (DevIC) : 23-24 March, 2019, Kalyani, Nadia, India / / edited by Dr. Angsuman Sarkar ; sponsored by Institute of Electrical and Electronics Engineers
Proceedings of 3rd International Conference on 2019 Devices for Integrated Circuit (DevIC) : 23-24 March, 2019, Kalyani, Nadia, India / / edited by Dr. Angsuman Sarkar ; sponsored by Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2019
Descrizione fisica 1 online resource (518 pages)
Disciplina 621.3815
Soggetto topico Integrated circuits
Semiconductors
ISBN 1-5386-6722-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996580864203316
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2019
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui