top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Intelligence-based smart power systems / / edited by Sanjeevikumar Padmanaban [and three others]
Artificial Intelligence-based smart power systems / / edited by Sanjeevikumar Padmanaban [and three others]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (403 pages)
Disciplina 621.381044028563
Soggetto topico Smart power grids
Artificial intelligence
ISBN 1-119-89399-2
1-119-89397-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Editor Biography -- List of Contributors -- Chapter 1 Introduction to Smart Power Systems -- 1.1 Problems in Conventional Power Systems -- 1.2 Distributed Generation (DG) -- 1.3 Wide Area Monitoring and Control -- 1.4 Automatic Metering Infrastructure -- 1.5 Phasor Measurement Unit -- 1.6 Power Quality Conditioners -- 1.7 Energy Storage Systems -- 1.8 Smart Distribution Systems -- 1.9 Electric Vehicle Charging Infrastructure -- 1.10 Cyber Security -- 1.11 Conclusion -- References -- Chapter 2 Modeling and Analysis of Smart Power System -- 2.1 Introduction -- 2.2 Modeling of Equipment's for Steady‐State Analysis -- 2.2.1 Load Flow Analysis -- 2.2.1.1 Gauss Seidel Method -- 2.2.1.2 Newton Raphson Method -- 2.2.1.3 Decoupled Load Flow Method -- 2.2.2 Short Circuit Analysis -- 2.2.2.1 Symmetrical Faults -- 2.2.2.2 Unsymmetrical Faults -- 2.2.3 Harmonic Analysis -- 2.3 Modeling of Equipments for Dynamic and Stability Analysis -- 2.4 Dynamic Analysis -- 2.4.1 Frequency Control -- 2.4.2 Fault Ride Through -- 2.5 Voltage Stability -- 2.6 Case Studies -- 2.6.1 Case Study 1 -- 2.6.2 Case Study 2 -- 2.6.2.1 Existing and Proposed Generation Details in the Vicinity of Wind Farm -- 2.6.2.2 Power Evacuation Study for 50 MW Generation -- 2.6.2.3 Without Interconnection of the Proposed 50 MW Generation from Wind Farm on 66 kV Level of 220/66 kV Substation -- 2.6.2.4 Observations Made from Table -- 2.6.2.5 With the Interconnection of Proposed 50 MW Generation from Wind Farm on 66 kV level of 220/66 kV Substation -- 2.6.2.6 Normal Condition without Considering Contingency -- 2.6.2.7 Contingency Analysis -- 2.6.2.8 With the Interconnection of Proposed 60 MW Generation from Wind Farm on 66 kV Level of 220/66 kV Substation -- 2.7 Conclusion -- References.
Chapter 3 Multilevel Cascaded Boost Converter Fed Multilevel Inverter for Renewable Energy Applications -- 3.1 Introduction -- 3.2 Multilevel Cascaded Boost Converter -- 3.3 Modes of Operation of MCBC -- 3.3.1 Mode‐1 Switch SA Is ON -- 3.3.2 Mode‐2 Switch SA Is ON -- 3.3.3 Mode‐3‐Operation - Switch SA Is ON -- 3.3.4 Mode‐4‐Operation - Switch SA Is ON -- 3.3.5 Mode‐5‐Operation - Switch SA Is ON -- 3.3.6 Mode‐6‐Operation - Switch SA Is OFF -- 3.3.7 Mode‐7‐Operation - Switch SA Is OFF -- 3.3.8 Mode‐8‐Operation - Switch SA Is OFF -- 3.3.9 Mode‐9‐Operation - Switch SA Is OFF -- 3.3.10 Mode 10‐Operation - Switch SA is OFF -- 3.4 Simulation and Hardware Results -- 3.5 Prominent Structures of Estimated DC-DC Converter with Prevailing Converter -- 3.5.1 Voltage Gain and Power Handling Capability -- 3.5.2 Voltage Stress -- 3.5.3 Switch Count and Geometric Structure -- 3.5.4 Current Stress -- 3.5.5 Duty Cycle Versus Voltage Gain -- 3.5.6 Number of Levels in the Planned Converter -- 3.6 Power Electronic Converters for Renewable Energy Sources (Applications of MLCB) -- 3.6.1 MCBC Connected with PV Panel -- 3.6.2 Output Response of PV Fed MCBC -- 3.6.3 H‐Bridge Inverter -- 3.7 Modes of Operation -- 3.7.1 Mode 1 -- 3.7.2 Mode 2 -- 3.7.3 Mode 3 -- 3.7.4 Mode 4 -- 3.7.5 Mode 5 -- 3.7.6 Mode 6 -- 3.7.7 Mode 7 -- 3.7.8 Mode 8 -- 3.7.9 Mode 9 -- 3.7.10 Mode 10 -- 3.8 Simulation Results of MCBC Fed Inverter -- 3.9 Power Electronic Converter for E‐Vehicles -- 3.10 Power Electronic Converter for HVDC/Facts -- 3.11 Conclusion -- References -- Chapter 4 Recent Advancements in Power Electronics for Modern Power Systems‐Comprehensive Review on DC‐Link Capacitors Concerning Power Density Maximization in Power Converters -- 4.1 Introduction -- 4.2 Applications of Power Electronic Converters -- 4.2.1 Power Electronic Converters in Electric Vehicle Ecosystem.
4.2.2 Power Electronic Converters in Renewable Energy Resources -- 4.3 Classification of DC‐Link Topologies -- 4.4 Briefing on DC‐Link Topologies -- 4.4.1 Passive Capacitive DC Link -- 4.4.1.1 Filter Type Passive Capacitive DC Links -- 4.4.1.2 Filter Type Passive Capacitive DC Links with Control -- 4.4.1.3 Interleaved Type Passive Capacitive DC Links -- 4.4.2 Active Balancing in Capacitive DC Link -- 4.4.2.1 Separate Auxiliary Active Capacitive DC Links -- 4.4.2.2 Integrated Auxiliary Active Capacitive DC Links -- 4.5 Comparison on DC‐Link Topologies -- 4.5.1 Comparison of Passive Capacitive DC Links -- 4.5.2 Comparison of Active Capacitive DC Links -- 4.5.3 Comparison of DC Link Based on Power Density, Efficiency, and Ripple Attenuation -- 4.6 Future and Research Gaps in DC‐Link Topologies with Balancing Techniques -- 4.7 Conclusion -- References -- Chapter 5 Energy Storage Systems for Smart Power Systems -- 5.1 Introduction -- 5.2 Energy Storage System for Low Voltage Distribution System -- 5.3 Energy Storage System Connected to Medium and High Voltage -- 5.4 Energy Storage System for Renewable Power Plants -- 5.4.1 Renewable Power Evacuation Curtailment -- 5.5 Types of Energy Storage Systems -- 5.5.1 Battery Energy Storage System -- 5.5.2 Thermal Energy Storage System -- 5.5.3 Mechanical Energy Storage System -- 5.5.4 Pumped Hydro -- 5.5.5 Hydrogen Storage -- 5.6 Energy Storage Systems for Other Applications -- 5.6.1 Shift in Energy Time -- 5.6.2 Voltage Support -- 5.6.3 Frequency Regulation (Primary, Secondary, and Tertiary) -- 5.6.4 Congestion Management -- 5.6.5 Black Start -- 5.7 Conclusion -- References -- Chapter 6 Real‐Time Implementation and Performance Analysis of Supercapacitor for Energy Storage -- 6.1 Introduction -- 6.2 Structure of Supercapacitor -- 6.2.1 Mathematical Modeling of Supercapacitor.
6.3 Bidirectional Buck-Boost Converter -- 6.3.1 FPGA Controller -- 6.4 Experimental Results -- 6.5 Conclusion -- References -- Chapter 7 Adaptive Fuzzy Logic Controller for MPPT Control in PMSG Wind Turbine Generator -- 7.1 Introduction -- 7.2 Proposed MPPT Control Algorithm -- 7.3 Wind Energy Conversion System -- 7.3.1 Wind Turbine Characteristics -- 7.3.2 Model of PMSG -- 7.4 Fuzzy Logic Command for the MPPT of the PMSG -- 7.4.1 Fuzzification -- 7.4.2 Fuzzy Logic Rules -- 7.4.3 Defuzzification -- 7.5 Results and Discussions -- 7.6 Conclusion -- References -- Chapter 8 A Novel Nearest Neighbor Searching‐Based Fault Distance Location Method for HVDC Transmission Lines -- 8.1 Introduction -- 8.2 Nearest Neighbor Searching -- 8.3 Proposed Method -- 8.3.1 Power System Network Under Study -- 8.3.2 Proposed Fault Location Method -- 8.4 Results -- 8.4.1 Performance Varying Nearest Neighbor -- 8.4.2 Performance Varying Distance Matrices -- 8.4.3 Near Boundary Faults -- 8.4.4 Far Boundary Faults -- 8.4.5 Performance During High Resistance Faults -- 8.4.6 Single Pole to Ground Faults -- 8.4.7 Performance During Double Pole to Ground Faults -- 8.4.8 Performance During Pole to Pole Faults -- 8.4.9 Error Analysis -- 8.4.10 Comparison with Other Schemes -- 8.4.11 Advantages of the Scheme -- 8.5 Conclusion -- Acknowledgment -- References -- Chapter 9 Comparative Analysis of Machine Learning Approaches in Enhancing Power System Stability -- 9.1 Introduction -- 9.2 Power System Models -- 9.2.1 PSS Integrated Single Machine Infinite Bus Power Network -- 9.2.2 PSS‐UPFC Integrated Single Machine Infinite Bus Power Network -- 9.3 Methods -- 9.3.1 Group Method Data Handling Model -- 9.3.2 Extreme Learning Machine Model -- 9.3.3 Neurogenetic Model -- 9.3.4 Multigene Genetic Programming Model -- 9.4 Data Preparation and Model Development.
9.4.1 Data Production and Processing -- 9.4.2 Machine Learning Model Development -- 9.5 Results and Discussions -- 9.5.1 Eigenvalues and Minimum Damping Ratio Comparison -- 9.5.2 Time‐Domain Simulation Results Comparison -- 9.5.2.1 Rotor Angle Variation Under Disturbance -- 9.5.2.2 Rotor Angular Frequency Variation Under Disturbance -- 9.5.2.3 DC‐Link Voltage Variation Under Disturbance -- 9.6 Conclusions -- References -- Chapter 10 Augmentation of PV‐Wind Hybrid Technology with Adroit Neural Network, ANFIS, and PI Controllers Indeed Precocious DVR System -- 10.1 Introduction -- 10.2 PV‐Wind Hybrid Power Generation Configuration -- 10.3 Proposed Systems Topologies -- 10.3.1 Structure of PV System -- 10.3.2 The MPPTs Technique -- 10.3.3 NN Predictive Controller Technique -- 10.3.4 ANFIS Technique -- 10.3.5 Training Data -- 10.4 Wind Power Generation Plant -- 10.5 Pitch Angle Control Techniques -- 10.5.1 PI Controller -- 10.5.2 NARMA‐L2 Controller -- 10.5.3 Fuzzy Logic Controller Technique -- 10.6 Proposed DVRs Topology -- 10.7 Proposed Controlling Technique of DVR -- 10.7.1 ANFIS and PI Controlling Technique -- 10.8 Results of the Proposed Topologies -- 10.8.1 PV System Outputs (MPPT Techniques Results) -- 10.8.2 Main PV System outputs -- 10.8.3 Wind Turbine System Outputs (Pitch Angle Control Technique Result) -- 10.8.4 Proposed PMSG Wind Turbine System Output -- 10.8.5 Performance of DVR (Controlling Technique Results) -- 10.8.6 DVRs Performance -- 10.9 Conclusion -- References -- Chapter 11 Deep Reinforcement Learning and Energy Price Prediction -- 11.1 Introduction -- 11.2 Deep and Reinforcement Learning for Decision‐Making Problems in Smart Power Systems -- 11.2.1 Reinforcement Learning -- 11.2.1.1 Markov Decision Process (MDP) -- 11.2.1.2 Value Function and Optimal Policy -- 11.2.2 Reinforcement Learnings to Deep Reinforcement Learnings.
11.2.3 Deep Reinforcement Learning Algorithms.
Record Nr. UNINA-9910829867803321
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cable Based and Wireless Charging Systems for Electric Vehicles : Technology and Control, Management and Grid Integration
Cable Based and Wireless Charging Systems for Electric Vehicles : Technology and Control, Management and Grid Integration
Autore Singh Rajiv
Edizione [1st ed.]
Pubbl/distr/stampa Stevenage : , : Institution of Engineering & Technology, , 2022
Descrizione fisica 1 online resource (413 pages)
Disciplina 629.2293
Altri autori (Persone) SanjeevikumarPadmanaban <1978->
DwivediSanjeet Kumar
MolinasMarta
BlaabjergFrede
Collana Transportation
Soggetto topico Electric vehicles - Batteries
ISBN 1-83724-595-9
1-5231-4264-2
1-83953-179-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Halftitle Page -- Series Page -- Title Page -- Copyright -- Contents -- About the editors -- About the editors -- 1   Charging stations and standards -- 1.1   Introduction -- 1.2   Conductive charging of EVs -- 1.2.1   EV charging infrastructure -- 1.2.2   Integration of EV with power grid -- 1.2.3   International standards and regulations -- 1.3   Inductive charging of EVs -- 1.3.1   Need for inductive charging of EV -- 1.3.2   Modes of IPT -- 1.3.3   Operating principle of IPT -- 1.3.4   Static inductive charging -- 1.3.5   Dynamic inductive charging -- 1.3.6   Bidirectional power flow -- 1.3.7   International standards and regulations -- 1.4   Conclusion -- References -- 2   Grid impact of static and dynamic inductive charging and its mitigation through effective management -- 2.1   Introduction -- 2.2   Tool for estimating the demand for fast inductive charging stations -- 2.2.1   Estimation tool for static inductive charging -- 2.2.2   Estimation tool for dynamic inductive charging -- 2.3   Impact of inductive charging on the distribution grid -- 2.3.1   Impact of static inductive charging on the grid -- 2.3.2   Impact of dynamic inductive charging on the grid -- 2.4   RES and inductive charging -- 2.5   EMS for inductive charging of EVs -- 2.5.1   'Global' demand response services -- 2.5.2   'Local' demand response services at the substation level -- 2.6   Conclusions -- References -- 3   Wireless power transfer in EVs during motion -- 3.1   Introduction -- 3.2   WPT systems: basic theories and applications -- 3.3   System modeling -- 3.4   Circuit and parameter design of the system -- 3.4.1   Standards for WPT system -- 3.4.2   Types of transmitter and receiver coils -- 3.4.3   Types of compensation circuits -- 3.4.4   Parameter design methods -- 3.4.5   Considerations for soft-switching of inverter -- 3.5   Control system for DWC.
3.5.1   Load voltage and power regulation -- 3.5.2   Tuning of operating frequency -- 3.5.3   Load impedance matching -- 3.6   Future trends -- 3.6.1   Integration of WPT system and renewable energy systems -- 3.6.2   Vehicle to grid connection -- 3.6.3   V2V power transfer -- 3.6.4   Integration of WPT system and motor drive -- 3.7   Conclusion -- References -- 4   Considerations on dynamic inductive charging: optimizing the energy transfer at a high efficiency and experimental implementation -- 4.1   Introduction -- 4.2   Differences among static and dynamic inductive charging -- 4.2.1   Analysis of a dynamic inductive charging system -- 4.2.2   Bifurcation in dynamic inductive charging -- 4.2.3   Self-inductance variations in dynamic inductive charging -- 4.3   Optimizing the power transfer and the efficiency in dynamic inductive charging -- 4.4   Control system in dynamic inductive charging -- 4.4.1   Primary side control -- 4.4.2   Secondary side control -- 4.5   Application of the optimization problem and the control system in a circular magnetic coupler -- 4.5.1   Application of the optimization problem -- 4.5.2   Simulation of the applied control -- 4.6   Experimental validation of the proposed optimization and control scheme -- 4.6.1   Implementation of the magnetic coupler -- 4.6.2   Application of the proposed optimization method in the implemented magnetic coupler -- 4.6.3   Implementation of the inverter and the control system -- 4.7   Conclusions -- References -- 5   Converter classification, analysis, and control issues with EV -- 5.1   Introduction -- 5.2   State of art of power converters used for EV application -- 5.3   Quadratic converters -- 5.4   Design example of converter for HEV/EV -- 5.4.1   Working principle of bidirectional converter -- 5.4.2   Steady-state analysis -- 5.4.3   Passive components design.
5.4.4   Small-signal analysis -- 5.5   Simulation and experimental verifications -- 5.6   EV drives and control -- 5.7   Conclusion -- References -- 6   Reducing grid dependency of EV charging using renewable and storage systems -- 6.1   EV charging system -- 6.1.1   EV charger topologies -- 6.1.2   EV charging/discharging strategies -- 6.2   Integration of EV charging-home solar PV system -- 6.2.1   Operation modes of EVC-HSP system -- 6.2.2   Control strategy of EVC-HSP system -- 6.2.3   Simulation results of EVC-HSP system -- 6.2.4   Experimental results of EVC-HSP system -- 6.2.5   Summary designing of an EVC-HSP system -- 6.3   Level 3 - fast-charging infrastructure with solar PV and energy storage -- 6.3.1   Power converter for FCI -- 6.3.2   Control diagram for FCI -- 6.3.3   Simulation results for FCI -- 6.3.4   Summary designing of an FCI -- 6.4   Conclusions -- References -- 7   Optimal charge control strategies of EVs for enhancement of battery life and lowering the charging cost -- 7.1   Introduction -- 7.2   Integration of EVs in power systems -- 7.2.1   EV chargers -- 7.2.2   EV batteries -- 7.3   Charge/discharge control strategies of EVs -- 7.3.1   Configuration for the optimal charging/discharging strategies of EVs -- 7.3.2   Development of the analytical models of EVs -- 7.4   Optimal control strategy for integration of EVs to enhance battery life and lower the charging cost -- 7.4.1   Optimal EV charging control strategy -- 7.4.2   Simulation results and discussions -- 7.5   Conclusion -- References -- 8   Energy management strategies in microgrids with EV and wind generators -- 8.1   Introduction -- 8.2   Day-ahead MG EMS considering EVs -- 8.2.1   Effects of EV's charging/discharging strategies on the EMS -- 8.2.2   Objective functions and constraints for MG-EMS equipped EVs -- 8.2.3   Multi-objective optimization.
8.2.4   Uncertainty modeling -- 8.3   Real-time MG energy management -- 8.4   MG Energy management with EVs, seawater desalination, and RESs: a case study -- 8.4.1   Overview of the proposed MG -- 8.4.2   Mathematical modeling and proposed algorithm -- 8.4.3   Numerical results -- 8.4.4   Comparative studies -- 8.5   Conclusion -- References -- 9   Optimal energy management strategies for integrating renewable sources and EVs into microgrids -- 9.1   Introduction -- 9.2   Architecture of microgrids -- 9.2.1   Microgrid classification -- 9.2.2   Microgrid components -- 9.3   Roles of EVs in microgrids -- 9.3.1   Smoothing renewable generation -- 9.3.2   Economic benefits -- 9.3.3   Power/energy reserve -- 9.3.4   Mitigating load consumption -- 9.3.5   Reliability improvement -- 9.3.6   Scheduling power exchange -- 9.3.7   Peak shaving -- 9.3.8   Frequency regulation using EVs -- 9.4   Energy management system of microgrids -- 9.4.1   Problem identification -- 9.4.2   EMS strategies for microgrids with EVs -- 9.5   Conclusions -- References -- 10   Charging infrastructure layout and planning for plug-­in electric vehicles -- 10.1   Introduction -- 10.2   Electric vehicle supply equipment technology -- 10.3   Basic EVSE components -- 10.3.1   EVSE -- 10.3.2   Electric vehicle connector -- 10.3.3   Electric vehicle inlet -- 10.4   PEV battery systems -- 10.4.1   Battery technology-a power unit of EV -- 10.5   Charging system -- 10.5.1   Options for electric vehicle supply equipment -- 10.6   Battery charger -- 10.7   EVSE charger classifications -- 10.8   EVSE signaling and communications -- 10.9   Vehicle-to-grid -- 10.10   Wireless charging -- 10.10.1   Inductive and resonant technologies -- 10.10.2   Research on wireless charging -- 10.11   Vehicle design -- 10.11.1   Society of automotive engineers -- 10.12   Innovative charging solutions.
10.12.1   Solar charging -- 10.12.2   Development hindrances in EVSE infrastructure expansion -- 10.12.3   Governmental awareness -- 10.12.4   Financial surprises -- 10.12.5   Standards -- 10.13   Site visit and evaluation and selection -- 10.14   Planning and selection of charging station -- 10.15   A few initiatives and recommendation for accelerating the development of EVSE infrastructure -- 10.16   Feasibility of accelerating EVSE installation -- 10.17   Conclusion and recommendations -- 10.17.1   Key recommendations -- References -- 11   Power loss and thermal modeling of charger circuit for reliability enhancement of EV charging systems -- 11.1    Introduction -- 11.2    Power electronic converters in EVs -- 11.3    Modulation and analytical power loss model of power electronic converters -- 11.3.1   Conduction power losses in traction inverters -- 11.3.2   Analytical model of switching power losses -- 11.3.3   Power loss profile in traction inverter -- 11.4    Thermal reliability of power converters -- 11.4.1   Electro-thermal behavior of power IGBT modules -- 11.4.2   Design and FEM analysis of power modules in ANSYS -- 11.4.3   3D thermal model of IGBT modules and thermal coupling -- 11.5    Conclusion -- References -- Index -- Back Cover.
Altri titoli varianti Cable Based and Wireless Charging Systems for Electric Vehicles
Record Nr. UNINA-9911007033603321
Singh Rajiv  
Stevenage : , : Institution of Engineering & Technology, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fast charging infrastructure for electric and hybrid electric vehicles : methods for large scale penetration into electric distribution networks / / Sivaraman Palanisamy, Sharmeela Chenniappan, and P. Sanjeevikumar
Fast charging infrastructure for electric and hybrid electric vehicles : methods for large scale penetration into electric distribution networks / / Sivaraman Palanisamy, Sharmeela Chenniappan, and P. Sanjeevikumar
Autore Palanisamy Sivaraman <1991->
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (242 pages)
Disciplina 629.286
Soggetto topico Battery charging stations (Electric vehicles)
Electric vehicles - Power supply
Electric vehicles - Electric equipment
ISBN 1-119-98776-8
1-119-98777-6
1-119-98775-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- About the Authors -- Chapter 1 Introduction to Electric Vehicle Fast-Charging Infrastructure -- 1.1 Introduction -- 1.2 Fast-Charging Station -- 1.2.1 Power Grid or Grid Power Supply -- 1.2.2 Power Cables -- 1.2.3 Switchgears -- 1.2.4 Distribution Transformer -- 1.2.5 Energy Meters and Power Quality Meters -- 1.2.6 Fast Chargers -- 1.2.7 Plugs and Connectors -- 1.3 Fast-Charging Station Using Renewable Power Sources (RES) -- 1.4 Digital Communication for Fast-Charging Station -- 1.5 Requirements for Fast-Charging Station -- 1.6 Case Study: Public Fast-Charging Station in India -- 1.7 Conclusion -- References -- Annexure 1 Photos -- Chapter 2 Selection of Fast-Charging Station -- 2.1 Introduction -- 2.2 Business Model for Fast-Charging Stations -- 2.3 Location of Fast-Charging Station -- 2.4 Electric Supply for Fast Charging -- 2.5 Availability of Land -- 2.6 Conclusion -- References -- Chapter 3 Business Model and Tariff Structure for Fast-Charging Station -- 3.1 Introduction -- 3.2 Business Model -- 3.2.1 Integrated Model -- 3.2.2 Independent Model -- 3.2.3 Selection of Business Model for Fast-Charging Station -- 3.2.4 Fast-Charging Infrastructure and Operating Expenses -- 3.3 Battery Swapping -- 3.4 Tariff Structure -- 3.4.1 Tariff Between Electric Utilities (DISCOMs) and Fast-Charging Stations -- 3.4.2 Tariff Between Fast-Charging Stations and EV Users -- 3.5 Conclusion -- References -- Chapter 4 Batteries for Fast-Charging Infrastructure -- 4.1 Introduction -- 4.2 C-Rating of the Battery -- 4.3 Different Types of Chemistries -- 4.3.1 Li-Ion Family -- 4.3.2 Lead Acid -- 4.3.3 Nickel Family -- 4.3.4 Selection of Battery Chemistry -- 4.4 Batteries Used in EVs in the Market -- 4.5 Conclusion -- References -- Chapter 5 Distribution System Planning -- 5.1 Introduction.
5.2 Planning for Power and Energy Demand -- 5.3 Planning for Distribution System Feeders and Equipment -- 5.4 Conclusion -- References -- Chapter 6 Electric Distribution for Fast-Charging Infrastructure -- 6.1 Introduction -- 6.2 Major Components of Fast-Charging Station -- 6.3 Design of Fast-Charging Station -- 6.3.1 Single Point of Failure -- 6.3.2 Configuration of Electrical Distribution Considering the Redundancy -- 6.4 Conclusion -- References -- Chapter 7 Energy Storage System for Fast-Charging Stations -- 7.1 Introduction -- 7.2 Renewables + ESS -- 7.2.1 Solar PV System without Battery Energy Storage System - Scheme 1 AC Interconnection -- 7.2.2 Solar PV System with Battery Energy Storage System - Scheme 2 AC Interconnection -- 7.2.3 Solar PV System with Battery Energy Storage System - Scheme 3 DC Interconnection -- 7.3 Microgrid with Renewables + ESS -- 7.3.1 Grid-Connected Microgrid for Fast-Charging Stations -- 7.3.2 Standalone Microgrid for Fast-Charging Stations -- 7.4 ESS Modes of Operation -- 7.5 Conclusion -- References -- Chapter 8 Surge Protection Device for Electric Vehicle Fast-Charging Infrastructure -- 8.1 Introduction -- 8.2 Surge Protection for Fast-Charging Stations -- 8.2.1 Surge Protection for Open Locations -- 8.2.2 Surge Protection for Covered Locations -- 8.3 Surge Protection for Underground Locations -- 8.4 Conclusion -- References -- Chapter 9 Power Quality Problems Associated with Fast-Charging Stations -- 9.1 Introduction -- 9.2 Introduction to Power Quality -- 9.3 Power Quality Problems Due to Fast-Charging Stations -- 9.3.1 Impact of Poor Power Quality of Distribution Grid on Fast-Charging Station Loads -- 9.3.2 Impact of Poor Power Quality from the Fast-Charging Station Loads on the Distribution Grid -- 9.4 Analysis of Harmonic Injection into the Distribution System -- 9.4.1 Hand Calculation or Manual Calculation.
9.4.2 Conducting Field Measurements at the Site -- 9.4.3 Model Calibration -- 9.4.4 Computer Simulation -- 9.5 Analysis of System Resonance Condition -- 9.6 Analysis of Supra-Harmonics -- 9.7 Case Study: Harmonic Measurement of 30 kW DC Fast Charger -- 9.8 Conclusion -- References -- Chapter 10 Standards for Fast-Charging Infrastructure -- 10.1 Introduction -- 10.2 IEC Standards -- 10.2.1 IEC 61851 -- 10.2.2 IEC 61980 Electric Vehicle Wireless Power Transfer Systems -- 10.2.3 IEC 62196 Plugs, Socket-Outlets, Vehicle Connectors, and Vehicle Inlets - Conductive Charging of Electric Vehicles -- 10.2.4 IEC TR 62933-2-200 Electrical Energy Storage (EES) Systems - Part 2-200: Unit Parameters and Testing Methods - Case Study of EES Systems Located in EV Charging Station with PV -- 10.2.5 IEC 62893 Charging Cables for Electric Vehicles for Rated Voltages up to and Including 0.6/1 kV -- 10.2.6 IEC 60364-7-722 Low-Voltage Electrical Installations - Part 7-722: Requirements for Special Installations or Locations - Supplies for Electric Vehicles -- 10.3 IEEE Standards -- 10.3.1 IEEE Std 2030.1.1-2021 IEEE Standard for Technical Specifications for a DC Quick and Bidirectional Charger for Use with Electric Vehicles -- 10.3.2 IEEE Std 2836-2021 IEEE Recommended Practice for Performance Testing of Electrical Energy Storage (ESS) System in Electric Charging Stations in Combination with Photovoltaic (PV) -- 10.4 SAE Standards -- 10.4.1 SAE J1772 SAE Electric Vehicle and Plug-in Hybrid Electric Vehicle Conductive Charge Coupler -- 10.4.2 SAE J2894-1 2019 Power Quality Requirements for Plug-In Electric Vehicle Chargers -- 10.5 ISO 17409 Electrically Propelled Road Vehicles - Connection to an External Electric Power Supply - Safety Requirements -- 10.6 CEA Technical Standards in India.
10.6.1 Technical Standards for Connectivity of the Distributed Generation Resources - February 2019 -- 10.6.2 Technical Standards for Measures Relating to Safety and Electric Supply - June 2019 -- 10.7 BS 7671-2018 Requirements for Electrical Installations -- 10.8 Conclusion -- References -- Chapter 11 Fast-Charging Infrastructure for Electric Vehicles: Today's Situation and Future Needs -- 11.1 Batteries -- 11.1.1 Voltage -- 11.1.2 Improvements in Battery Chemistry -- 11.1.3 Standardization of Battery Ratings (Capacity, Voltage, and Dimensions) for Enabling Battery Swapping -- 11.2 Distributed Energy Storage System and Grid-Friendly Charging -- 11.3 Ultrafast Chargers -- 11.4 Interoperable Features -- 11.5 Charging the Vehicle While Driving (Wireless Charging) -- 11.6 Conclusion -- References -- Chapter 12 A Review of the Improved Structure of an Electric Vehicle Battery Fast Charger -- 12.1 Introduction -- 12.2 Types of Battery Charging -- 12.2.1 Li-Ion Battery Charger Algorithm -- 12.2.2 Constant Voltage-Current Charging Method -- 12.2.3 Constant Current Multilevel Charging Method -- 12.2.4 Method of Incremental Charging -- 12.2.5 Pulse Charging Method -- 12.2.6 Sinusoidal Pulse Charging Algorithm -- 12.2.7 Using a Different Frequency Pulse Charging Method (VFPCS) -- 12.2.8 Pulse Voltage Charging Method with Different Pulse Widths (DVVPCS) -- 12.2.9 An Overview of Lithium-Ion Batteries -- 12.2.10 Performance Comparison with Other Batteries -- 12.2.11 Lithium-Ion Battery Control System (BMS) -- 12.2.12 Cell Control -- 12.2.13 Checking Input and Output Current and Voltage -- 12.2.14 Battery Charge and Discharge Control -- 12.2.15 State Estimation -- 12.2.16 State of Charge -- 12.2.17 State of Health (SoH) -- 12.2.18 Mode of Operation (SoF) -- 12.2.19 Battery Protection -- 12.3 Temperature and Heat Control -- 12.3.1 Examining the Charger Structure.
12.4 Bidirectional AC-DC Converters -- 12.4.1 Unidirectional AC-DC Converters -- 12.4.2 Unidirectional Isolated DC-DC Converters -- 12.4.3 Bidirectional Isolated DC-DC Converters -- 12.5 High-Frequency Transformers -- 12.5.1 High-Frequency Transformer Design -- 12.5.2 Core Geometry Method -- 12.5.3 Core Losses -- 12.6 Examine Some of the Charger Examples Provided in the References -- 12.7 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9910830337403321
Palanisamy Sivaraman <1991->  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Green energy : solar energy, photovoltaics, and smart cities / / editors, Suman Lata Tripathi, Sanjeevikumar Padmanaban
Green energy : solar energy, photovoltaics, and smart cities / / editors, Suman Lata Tripathi, Sanjeevikumar Padmanaban
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Incorporated
Descrizione fisica 1 online resource (640 pages) : illustrations
Disciplina 333.7923091732
Soggetto topico Renewable energy sources
Green technology
Clean energy
Soggetto genere / forma Electronic books.
ISBN 1-5231-3685-5
1-119-76078-X
1-119-76080-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555246303321
Hoboken, NJ : , : John Wiley & Sons, Incorporated
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Green energy : solar energy, photovoltaics, and smart cities / / editors, Suman Lata Tripathi, Sanjeevikumar Padmanaban
Green energy : solar energy, photovoltaics, and smart cities / / editors, Suman Lata Tripathi, Sanjeevikumar Padmanaban
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Incorporated
Descrizione fisica 1 online resource (640 pages) : illustrations
Disciplina 333.7923091732
Soggetto topico Renewable energy sources
Green technology
Clean energy
ISBN 1-5231-3685-5
1-119-76078-X
1-119-76080-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830949403321
Hoboken, NJ : , : John Wiley & Sons, Incorporated
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent Control of Medium and High Power Converters
Intelligent Control of Medium and High Power Converters
Autore Bendaoud Mohamed
Edizione [1st ed.]
Pubbl/distr/stampa Stevenage : , : Institution of Engineering & Technology, , 2023
Descrizione fisica 1 online resource (185 pages)
Disciplina 621.3126
Altri autori (Persone) MalehYassine
SanjeevikumarPadmanaban <1978->
Collana Energy Engineering Series
Soggetto topico Electric current converters
ISBN 1-83724-438-3
1-5231-5541-8
1-83953-741-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Title -- Copyright -- Contents -- About the editors -- Preface -- 1 Power electronics converters-an overview -- 1.1 Introduction -- 1.2 DC-DC converters -- 1.2.1 Non-isolated DC-DC converters -- 1.2.2 Isolated DC-DC converters -- 1.2.3 Resonant converters -- 1.3 DC-AC converters -- 1.3.1 Two-level single-phase and three-phase inverters -- 1.3.2 Classification of two-level three-phase inverters -- 1.3.3 Multilevel inverters -- 1.3.4 Review of a novel proposed MLIs -- 1.4 Conclusion -- References -- 2 Sliding mode control of bidirectional DC-DC converter for EVs -- 2.1 Introduction -- 2.2 Sliding mode control of bidirectional DC-DC converter -- 2.2.1 Modeling of the converter -- 2.2.2 Choice of sliding surface -- 2.2.3 Derivation of control law -- 2.2.4 Derivation of existence and stability conditions -- 2.2.5 Sliding mode parameter selection using HHO algorithm -- 2.3 Simulation and experimental verifications -- 2.4 Conclusion -- References -- 3 High-gain DC-DC converter with extremum seeking control for PV application -- 3.1 Introduction -- 3.2 System description -- 3.2.1 Photovoltaic array -- 3.2.2 Suggested high-gain DC-DC converter -- 3.3 Proposed AESC technique -- 3.3.1 Line search-based optimization methods -- 3.3.2 Control scheme -- 3.3.3 Extremum seeking control approach -- 3.3.4 Convergence analysis of the AESC approach -- 3.4 Simulation and comparison results -- 3.4.1 Scenario 1 -- 3.4.2 Scenario 2 -- 3.5 Conclusion -- References -- 4 A control scheme to optimize efficiency of GaN-based DC-DC converters -- 4.1 Introduction -- 4.2 Proposed control scheme -- 4.3 Simulation and experimental verification -- 4.4 Conclusions -- References -- 5 Control design of grid-connected three-phase inverters -- 5.1 Introduction -- 5.2 Inverter topologies -- 5.2.1 Grid forming inverters -- 5.2.2 Grid following inverters -- 5.3 Control strategies.
5.3.1 Control architecture of GFL inverters -- 5.3.2 PLL -- 5.3.3 Power controller -- 5.3.4 Current controller -- 5.4 Results and discussion -- 5.4.1 Real-time co-simulation testbed -- 5.4.2 Power hardware-in-loop testbed -- 5.5 Conclusion -- References -- 6 Sliding mode control of a three-phase inverter -- 6.1 Introduction -- 6.2 Modeling description and control of the inverter -- 6.2.1 Mathematical model of the DC/AC converter -- 6.2.2 Proposed SMA -- 6.3 SMA for performance improvement of WPS fed by VSI -- 6.3.1 Modeling description of the WECS -- 6.3.2 SMA of the rectifier and MPP tracking approach -- 6.4 Simulation and evaluation of performance -- 6.5 Conclusions -- References -- 7 Sliding-mode control of a three-level NPC grid-connected inverter -- 7.1 Introduction -- 7.2 Three-phase grid-connected NPC inverter -- 7.3 Reaching law in SMC -- 7.3.1 Sliding surface design -- 7.4 Super twisting SMC -- 7.4.1 Control design -- 7.4.2 Stability of the super twisting SMC -- 7.5 Results and discussion -- 7.6 Conclusion -- References -- 8 Neuro control of grid-connected three-phase inverters -- 8.1 Introduction -- 8.2 System description -- 8.3 Control design -- 8.3.1 Neural network approximation -- 8.3.2 Neuro sliding mode control design -- 8.4 Simulation results -- 8.5 Conclusion -- References -- 9 Low switching frequency operation of multilevel converters for high-power applications -- 9.1 Introduction -- 9.2 Selective harmonic minimization problem formulation -- 9.3 Solving techniques -- 9.3.1 Numerical techniques -- 9.3.2 Algebraic methods -- 9.3.3 Intelligent algorithms -- 9.4 Results and discussion -- 9.5 Comparative analysis -- 9.6 Conclusion and future work -- References -- 10 Comparison and overview of power converter control methods -- 10.1 Introduction -- 10.2 Nonlinear controllers for power converters -- 10.2.1 Sliding mode.
10.2.2 Model predictive control -- 10.3 Intelligent controllers for power converter -- 10.3.1 Fuzzy logic controller (FLC) -- 10.3.2 Artificial neural network -- 10.3.3 Metaheuristic optimization -- 10.4 Comparative performance analysis -- 10.5 Conclusion -- References -- Index.
Record Nr. UNINA-9911007123803321
Bendaoud Mohamed  
Stevenage : , : Institution of Engineering & Technology, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modern automotive electrical systems / / edited by Pedram Asef, Sanjeevikumar Padmanaban and Andrew Lapthorn
Modern automotive electrical systems / / edited by Pedram Asef, Sanjeevikumar Padmanaban and Andrew Lapthorn
Pubbl/distr/stampa Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Wiley : , : Scrivener Publishing, , [2023]
Descrizione fisica 1 online resource (255 pages)
Disciplina 629.254
Soggetto topico Automobiles - Electric equipment
Automobiles - Electric generators
Automobiles - Electronic equipment
ISBN 1-119-80107-9
1-119-80106-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Chapter 1 General Introduction and Classification of Electrical Powertrains -- 1.1 Introduction -- 1.2 Worldwide Background for Change -- 1.3 Influence of Electric Vehicles on Climate Change -- 1.4 Mobility Class Based on Experience in the Netherlands (Based on EU Model) -- 1.5 Type-Approval Procedure -- 1.6 Torque-Speed Characteristic of the Powertrain for Mobility Vehicles -- 1.7 Methods of Field Weakening Without a Clear Definition -- 1.8 Consideration and Literature Concerning "Electronic" Field Weakening: What Does it Mean? -- 1.9 Summary of Electronic Field Weakening Definitions -- 1.10 Critical Study of Field Weakening Definitions -- 1.11 Motor Limits -- 1.12 Concluding Remarks -- References -- Chapter 2 Comparative Analyses of the Response of Core Temperature of a Lithium Ion Battery under Various Drive Cycles -- 2.1 Introduction -- 2.2 Thermal Modeling -- 2.3 Methodology -- 2.4 Simulation Results -- 2.5 Conclusions -- References -- Chapter 3 Classification and Assessment of Energy Storage Systems for Electrified Vehicle Applications: Modelling, Challenges, and Recent Developments -- 3.1 Introduction -- 3.2 Backgrounds -- 3.2.1 EV Classifications -- 3.2.2 EV Charging/Discharging Strategies -- 3.2.2.1 Uncontrolled Charge and Discharge Strategies -- 3.2.2.2 Controlled Charge and Discharge Strategies -- 3.2.2.3 Wireless Charging of EV -- 3.2.3 Classification of ESSs in EVs -- 3.3 Modeling of ESSs Applied in EVs -- 3.3.1 Mechanical Energy Storages -- 3.3.1.1 Flywheel Energy Storages -- 3.3.2 Electrochemical Energy Storages -- 3.3.2.1 Flow Batteries -- 3.3.2.2 Secondary Batteries -- 3.3.3 Chemical Storage Systems -- 3.3.4 Electrical Energy Storage Systems -- 3.3.4.1 Ultracapacitors -- 3.3.4.2 Superconducting Magnetic -- 3.3.5 Thermal Storage Systems -- 3.3.6 Hybrid Storage Systems.
3.3.7 Modeling Electrical Behavior -- 3.3.8 Modeling Thermal Behavior -- 3.3.9 SOC Calculation -- 3.4 Characteristics of ESSs -- 3.5 Application of ESSs in EVs -- 3.6 Methodologies of Calculating the SOC -- 3.6.1 Current-Based SOC Calculation Approach -- 3.6.2 Voltage-Based SOC Calculation Approach -- 3.6.3 Extended Kalman-Filter-Based SOC Calculation Approach -- 3.6.4 SOC Calculation Approach Based on the Transient Response Characteristics -- 3.6.5 Fuzzy Logic -- 3.6.6 Neural Networks -- 3.7 Estimation of Battery Power Availability -- 3.7.1 PNGV HPPC Power Availability Estimation Approach -- 3.7.2 Revised PNGV HPPC Power Availability Estimation Approach -- 3.7.3 Power Availability Estimation Based on the Electrical Circuit Equivalent Model -- 3.8 Life Prediction of Battery -- 3.8.1 Aspects of Battery Life -- 3.8.1.1 Temperature -- 3.8.1.2 Depth of Discharge -- 3.8.1.3 Charging/Discharging Rate -- 3.8.2 Battery Life Prediction Approaches -- 3.8.2.1 Physic-Chemical Aging Method -- 3.8.2.2 Event-Oriented Aging Method -- 3.8.2.3 Lifetime Prediction Method Based on SOL -- 3.8.3 RUL Prediction Methods -- 3.8.3.1 Machine Learning Methods -- 3.8.3.2 Adaptive Filter Methods -- 3.8.3.3 Stochastic Process Methods -- 3.9 Recent Trends, Future Extensions, and Challenges of ESSs in EV Implementations -- 3.10 Government Policy Challenges for EVs -- 3.11 Conclusion -- References -- Chapter 4 Thermal Management of the Li-Ion Batteries to Improve the Performance of the Electric Vehicles Applications -- 4.1 Introduction -- 4.2 The Objective of the Research -- 4.3 Electric Vehicles Trend -- 4.4 Thermal Management of the Li-Ion Batteries -- 4.4.1 Internal Battery Thermal Management System -- 4.4.2 External Battery Thermal Management System -- 4.4.2.1 Active Cooling Systems -- 4.4.2.2 Passive Cooling Systems -- 4.5 Lifetime Performance of Li-Ion Batteries.
4.5.1 Why Do Batteries Age? -- 4.5.2 Characterisation Techniques of Aging -- 4.5.3 Lifetime Tests Protocols of the Li-Ion Batteries -- 4.5.4 Lifetime Results of Different Li-Ion Technologies -- 4.6 Basic Aspects of Safety and Reliability Evaluation of EVs -- 4.6.1 Concept Reliability Analysis of Battery Pack from Thermal Aspects -- 4.6.2 Reliability Assessment of the Li-Ion Battery at High and Low Temperatures -- 4.7 Conclusion -- References -- Chapter 5 Fault Detection and Isolation in Electric Vehicle Powertrain -- 5.1 Introduction -- 5.1.1 EV Powertrain Configurations -- 5.1.1.1 Battery Electric Vehicle (BEV) -- 5.1.1.2 Hybrid Electric Vehicle (HEV) -- 5.1.1.3 Fuel Cell Electric Vehicle (FCEV) -- 5.1.2 EV Powertrain Technologies -- 5.1.2.1 Energy Storage System -- 5.1.2.2 Electric Motor -- 5.1.2.3 Power Electronics -- 5.2 Battery Fault Diagnosis -- 5.2.1 Battery Management System (BMS) -- 5.2.2 Model-Based FDI Approach -- 5.2.2.1 Battery Modelling -- 5.2.3 Signal Processing-Based FDI Approach -- 5.2.3.1 State of Charge (SOC) Estimation -- 5.2.3.2 State of Health Estimation -- 5.3 Electric Motor Fault Diagnosis -- 5.3.1 Electric Motor Faults -- 5.3.1.1 Mechanical Fault -- 5.3.1.2 Electrical Fault -- 5.3.2 Signal Processing-Based FDI Approach -- 5.3.2.1 Motor Current Signature Analysis (MSCA) -- 5.4 Power Electronics Fault Diagnosis -- 5.4.1 Signal Processing-Based FDI Approach -- 5.4.1.1 Open Switch Fault -- 5.4.1.2 Short Switch Fault -- 5.5 Conclusions -- References -- Index -- EULA.
Record Nr. UNINA-9910829908503321
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Wiley : , : Scrivener Publishing, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart charging solutions for hybrid and electric vehicles / / edited by Sulabh Sachan, Sanjeevikumar Padmanaban and Sanchari Deb
Smart charging solutions for hybrid and electric vehicles / / edited by Sulabh Sachan, Sanjeevikumar Padmanaban and Sanchari Deb
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Descrizione fisica 1 online resource (465 pages)
Disciplina 629.2293
Soggetto topico Electric vehicles
Soggetto genere / forma Electronic books.
ISBN 1-119-77171-4
1-119-77173-0
1-119-77172-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910554862603321
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart charging solutions for hybrid and electric vehicles / / edited by Sulabh Sachan, Sanjeevikumar Padmanaban and Sanchari Deb
Smart charging solutions for hybrid and electric vehicles / / edited by Sulabh Sachan, Sanjeevikumar Padmanaban and Sanchari Deb
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2022
Descrizione fisica 1 online resource (465 pages)
Disciplina 629.2293
Collana Advances in e-mobility
Soggetto topico Vehicles elèctrics
Electric vehicles
ISBN 1-119-77171-4
1-119-77173-0
1-119-77172-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910677885003321
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart Grids and Internet of Things : An Energy Perspective / / edited by Sanjeevikumar Padmanaban [and four others]
Smart Grids and Internet of Things : An Energy Perspective / / edited by Sanjeevikumar Padmanaban [and four others]
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc. and Scrivener Publishing LLC, , [2023]
Descrizione fisica 1 online resource (482 pages)
Disciplina 621.31
Soggetto topico Smart power grids
ISBN 1-119-81252-6
1-119-81251-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830605503321
Hoboken, NJ : , : John Wiley & Sons, Inc. and Scrivener Publishing LLC, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui