top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Metaheuristic optimization for the design of automatic control laws / / Guillaume Sandou
Metaheuristic optimization for the design of automatic control laws / / Guillaume Sandou
Autore Sandou Guillaume
Pubbl/distr/stampa Hoboken, NJ : , : ISTE Ltd/John Wiley and Sons Inc, , 2013
Descrizione fisica 1 online resource (140 p.)
Disciplina 519.6
Collana Focus automation and control series
Soggetto topico Mathematical optimization
Heuristic algorithms
ISBN 1-118-79651-9
1-118-79635-7
1-118-79648-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Cover ""; ""Title Page ""; ""Contents ""; ""Preface ""; ""Chapter 1. Introduction And Motivations ""; ""1.1. Introduction: automatic control and optimization ""; ""1.2. Motivations to use metaheuristic algorithms ""; ""1.3. Organization of the book ""; ""Chapter 2. Symbolic Regression ""
""2.1. Identification problematic and brief state of the art """"2.2. Problem statement and modeling ""; ""2.2.1. Problem statement ""; ""2.2.2. Problem modeling ""; ""2.3. Ant colony optimization ""; ""2.3.1. Ant colony social behavior ""; ""2.3.2. Ant colony optimization ""
""2.3.3. Ant colony for the identification of nonlinear functions with unknown structure """"2.4. Numerical results ""; ""2.4.1. Parameter settings ""; ""2.4.2. Experimental results ""; ""2.5. Discussion ""; ""2.5.1. Considering real variables ""; ""2.5.2. Local minima ""
""2.5.3. Identification of nonlinear dynamical systems """"2.6. A note on genetic algorithms for symbolic regression ""; ""2.7. Conclusions ""; ""Chapter 3. Pid Design Using Particle Swarm Optimization ""; ""3.1. Introduction ""; ""3.2. Controller tuning: a hard optimization problem ""
""3.2.1. Problem framework """"3.2.2. Expressions of time domain specifications ""; ""3.2.3. Expressions of frequency domain specifications ""; ""3.2.4. Analysis of the optimization problem ""; ""3.3. Particle swarm optimization implementation ""; ""3.4. PID tuning optimization ""
""3.4.1. Case study: magnetic levitation ""
Record Nr. UNINA-9910139015503321
Sandou Guillaume  
Hoboken, NJ : , : ISTE Ltd/John Wiley and Sons Inc, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metaheuristic optimization for the design of automatic control laws / / Guillaume Sandou
Metaheuristic optimization for the design of automatic control laws / / Guillaume Sandou
Autore Sandou Guillaume
Pubbl/distr/stampa Hoboken, NJ : , : ISTE Ltd/John Wiley and Sons Inc, , 2013
Descrizione fisica 1 online resource (140 p.)
Disciplina 519.6
Collana Focus automation and control series
Soggetto topico Mathematical optimization
Heuristic algorithms
ISBN 1-118-79651-9
1-118-79635-7
1-118-79648-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Cover ""; ""Title Page ""; ""Contents ""; ""Preface ""; ""Chapter 1. Introduction And Motivations ""; ""1.1. Introduction: automatic control and optimization ""; ""1.2. Motivations to use metaheuristic algorithms ""; ""1.3. Organization of the book ""; ""Chapter 2. Symbolic Regression ""
""2.1. Identification problematic and brief state of the art """"2.2. Problem statement and modeling ""; ""2.2.1. Problem statement ""; ""2.2.2. Problem modeling ""; ""2.3. Ant colony optimization ""; ""2.3.1. Ant colony social behavior ""; ""2.3.2. Ant colony optimization ""
""2.3.3. Ant colony for the identification of nonlinear functions with unknown structure """"2.4. Numerical results ""; ""2.4.1. Parameter settings ""; ""2.4.2. Experimental results ""; ""2.5. Discussion ""; ""2.5.1. Considering real variables ""; ""2.5.2. Local minima ""
""2.5.3. Identification of nonlinear dynamical systems """"2.6. A note on genetic algorithms for symbolic regression ""; ""2.7. Conclusions ""; ""Chapter 3. Pid Design Using Particle Swarm Optimization ""; ""3.1. Introduction ""; ""3.2. Controller tuning: a hard optimization problem ""
""3.2.1. Problem framework """"3.2.2. Expressions of time domain specifications ""; ""3.2.3. Expressions of frequency domain specifications ""; ""3.2.4. Analysis of the optimization problem ""; ""3.3. Particle swarm optimization implementation ""; ""3.4. PID tuning optimization ""
""3.4.1. Case study: magnetic levitation ""
Record Nr. UNINA-9910809791203321
Sandou Guillaume  
Hoboken, NJ : , : ISTE Ltd/John Wiley and Sons Inc, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui