top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Radio propagation measurement and channel modelling / / Sana Salous
Radio propagation measurement and channel modelling / / Sana Salous
Autore Salous Sana
Pubbl/distr/stampa Hoboken : , : John Wiley & Sons Inc., , 2013
Descrizione fisica 1 online resource (423 p.)
Disciplina 621.3841/1
Soggetto topico Shortwave radio - Transmitters and transmission - Measurement
Radio wave propagation - Measurement
Wireless communication systems
ISBN 1-118-50228-0
1-118-50232-9
1-299-31598-4
1-118-50231-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 4.12.1 Matched Filter Detector 199 -- 4.12.2 Heterodyne Detector of FMCW Signals 203 -- 4.12.3 Practical Consideration of Detection Methods of FMCW Signals 207 -- 4.13 Range Doppler Ambiguity of Chirp Signals: Advanced Waveforms 207 -- 4.13.1 Three-Cell Structure 208 -- 4.13.2 Multiple WRF Structure 210 -- 4.13.3 Target Movement 211 -- 4.13.4 Doppler Shift Estimation 211 -- 4.14 Architectures of Chirp Sounders 213 -- 4.15 Monostatic Operation of FMCW Sounder/Radar 217 -- 4.15.1 Reduction of Effective Mean Received Power 218 -- 4.15.2 Spreading of the Spectrum and Interference 219 -- 4.15.3 Blind Ranges and Range Ambiguity 220 -- 4.15.4 Selection Criteria for Switching Sequences 221 -- 4.15.5 Considerations for Edge Weighting 224 -- 4.15.6 Length of the Window 224 -- 4.15.7 Window Functions 224 -- 4.15.8 Interpolation and Quantization 225 -- 4.16 Single and Multiple Antenna Sounder Architectures 225 -- 4.16.1 Single Input Single Output (SISO) Sounders 226 -- 4.16.2 MISO, SIMO and MIMO Measurements with SISO Sounders 227 -- 4.16.3 Semi-Sequential MIMO Sounders 228 -- 4.16.4 Parallel MIMO Sounders 228 -- 4.17 Ultra-wideband (UWB) Channel Sounders 232 -- 4.18 Sounder Design 233 -- 4.18.1 Sounder for Indoor Radio Channels in the UHF Band 239 -- 4.18.2 Sounder for UHF Frequency Division Duplex Links for Outdoor Radio Channels 239 -- 4.18.3 Sounder for Multiple Frequency Links for Outdoor Radio Channels 239 -- 4.19 Performance Tests of a Channel Sounder and Calibration 239 -- 4.19.1 Ambiguity Function 241 -- 4.19.2 Linearity Test 242 -- 4.19.3 Frequency Response 243 -- 4.19.4 Calibration of Automatic Gain Control 243 -- 4.19.5 Isolation between Multiple Channels 245 -- 4.19.6 Sensitivity and Dynamic Range 246 -- 4.19.7 Effect of Interference on the Dynamic Range 249 -- 4.19.8 Stability of Frequency Sources 251 -- 4.19.9 Temperature Variations 251 -- 4.20 Overall Data Acquisition and Calibration 251 -- References 251 -- 5 Data Analysis 255 -- 5.1 Data Validation 255 -- 5.2 Spectral Analysis via the Discrete Fourier Transform 256.
5.3 DFT Analysis of the FMCW Channel Sounder Using a Heterodyne Detector 259 -- 5.3.1 Snapshot Impulse Response Analysis 260 -- 5.3.2 Frequency Response Analysis 263 -- 5.3.3 Estimation of the Delay Doppler Function 266 -- 5.4 Spectral Analysis of Network Analyzer Data via the IDFT 268 -- 5.5 DFT Analysis of CW Measurements for Estimation of the Doppler Spectrum 268 -- 5.6 Estimation of the Channel Frequency Response via the Hilbert Transform 269 -- 5.7 Parametric Modelling 269 -- 5.7.1 ARMA Modelling 271 -- 5.7.2 AR Modelling 271 -- 5.7.3 Practical Implementation of Parametric Modelling 271 -- 5.7.4 Parametric Modelling for Interference Reduction 272 -- 5.7.5 Parametric Modelling for Enhancement of Multipath Resolution 274 -- 5.8 Estimation of Power Delay Profile 276 -- 5.8.1 Noise Threshold 277 -- 5.8.2 Stationarity Test 280 -- 5.9 Small-Scale Characterization 286 -- 5.9.1 Time Domain Parameters 287 -- 5.9.2 Estimation of the Coherent Bandwidth 288 -- 5.9.3 Statistical Modelling of the Time Variations of the Channel Response 291 -- 5.10 Medium/Large-Scale Characterization 292 -- 5.10.1 CDF Representation 292 -- 5.10.2 Estimation of Path Loss 293 -- 5.10.3 Relating RMS Delay Spread to Path Loss and Distance 296 -- 5.10.4 Frequency Dependence of Channel Parameters 299 -- 5.11 Multiple Antenna Array Processing for Estimation of Direction of Arrival 301 -- 5.11.1 Theoretical Considerations for the Estimation of Direction of Arrival 303 -- 5.11.2 Spectral-Based Array Processing Techniques 308 -- 5.11.3 Parametric Methods 312 -- 5.11.4 Joint Parametric Techniques 316 -- 5.12 Practical Considerations of DOA Estimation 319 -- 5.12.1 Choice of Antenna Array 320 -- 5.12.2 Array Calibration 322 -- 5.12.3 Estimation of Direction of Arrival 326 -- 5.12.4 Estimation of Direction of the Arrival/Direction of Departure 331 -- 5.13 Estimation of MIMO Capacity 333 -- References 333 -- 6 Radio Link Performance Prediction 337 -- 6.1 Radio Link Simulators 337 -- 6.2 Narrowband Stochastic Radio Channel Simulator 338.
6.2.1 Quadrature Amplitude Modulation Simulator 339 -- 6.2.2 Filtered Noise Method 339 -- 6.2.3 Sum of Sinusoids Method (Jakes Method) 341 -- 6.2.4 Frequency Domain Method 343 -- 6.2.5 Reverberation Chambers (or Mode-Stirred Chambers) 344 -- 6.3 Wideband Stochastic Channel Simulator 346 -- 6.3.1 Time Domain Channel Simulators 346 -- 6.3.2 Frequency Domain Simulators 348 -- 6.4 Frequency Domain Implementation Using Fast Convolution 349 -- 6.5 Channel Block Realization from Measured Data 351 -- 6.6 Theoretical Prediction of System Performance in Additive White Gaussian Noise 353 -- 6.6.1 Matched Filter and Correlation Detector 354 -- 6.6.2 Bit Error Rate of the Matched Filter Detector in AWGN 356 -- 6.6.3 Bit Error Rate with Noncoherent Detectors 357 -- 6.6.4 Comparison of BER of Coherent and Noncoherent Detectors 358 -- 6.6.5 Higher Order Modulation 358 -- 6.7 Prediction of System Performance in Fading Channels 361 -- 6.7.1 Narrowband Signals 361 -- 6.7.2 Wideband Signals 363 -- 6.8 Bit Error Rate Prediction for Wireless Standards 364 -- 6.8.1 IEEE 802.16-d Standard 365 -- 6.8.2 IEEE 802.11-a Standard 371 -- 6.8.3 Third Generation WCDMA Standard 372 -- 6.9 Enhancement of Performance Using Diversity Gain 376 -- 6.9.1 Diversity Combining Methods 377 -- 6.9.2 Diversity Gain Prediction of Rayleigh Fading Channels from Measurements in a Reverberation Chamber 382 -- References 383 -- Appendix 1 385 -- A.1 Probability Distribution Functions 385 -- A.2 The Gaussian (Normal) Distribution 385 -- A.3 The Rayleigh Distribution 387 -- A.4 The Rician Distribution 388 -- A.5 The Nakagami m-Distribution 389 -- A.6 The Weibull Distribution 390 -- A.7 The Log-Normal Distribution 390 -- A.8 The Suzuki Distribution 391 -- A.9 The Chi-Square Distribution 391 -- References 391 -- Appendix 2 393 -- Index 395.
-- Foreword xiii -- Preface xv -- List of Symbols xvii -- Acronyms and Abbreviations xix -- 1 Radio Wave Fundamentals 1 -- 1.1 Maxwell's Equations 1 -- 1.2 Free Space Propagation 3 -- 1.3 Uniform Plane Wave Propagation 3 -- 1.4 Propagation of Electromagnetic Waves in Isotropic and Homogeneous Media 5 -- 1.5 Wave Polarization 8 -- 1.6 Propagation Mechanisms 11 -- 1.6.1 Reflection by an Isotropic Material 12 -- 1.6.2 Reflection/Refraction by an Anisotropic Material 18 -- 1.6.3 Diffuse Reflection/Scattering 19 -- 1.6.4 Diffraction 20 -- 1.7 Propagation in the Earth's Atmosphere 21 -- 1.7.1 Properties of the Earth's Atmosphere 21 -- 1.7.2 Radio Waves in the Ionosphere 25 -- 1.8 Frequency Dispersion of Radio Waves 29 -- 1.8.1 Phase Velocity versus Group Velocity 30 -- 1.8.2 Group Path versus Phase Path 31 -- 1.8.3 Phase Path Stability: Doppler Shift/Dispersion 32 -- References 33 -- 2 Radio Wave Transmission 35 -- 2.1 Free Space Transmission 35 -- 2.1.1 Path Loss 35 -- 2.1.2 Relating Power to the Electric Field 37 -- 2.2 Transmission Loss of Radio Waves in the Earth's Atmosphere 38 -- 2.2.1 Attenuation due to Gases in the Lower Atmosphere and Rain: Troposphere 38 -- 2.2.2 Attenuation of Radio Waves in an Ionized Medium: Ionosphere 41 -- 2.3 Attenuation Due to Propagation into Buildings 43 -- 2.4 Transmission Loss due to Penetration into Vehicles 46 -- 2.5 Diffraction Loss 49 -- 2.5.1 Fundamentals of Diffraction Loss: Huygen's Principle 49 -- 2.5.2 Diffraction Loss Due to a Single Knife Edge: Fresnel Integral Approach 50 -- 2.6 Diffraction Loss Models 54 -- 2.6.1 Single Knife Edge Diffraction Loss 54 -- 2.6.2 Multiple Edge Diffraction Loss 55 -- 2.7 Path Loss Due to Scattering 57 -- 2.8 Multipath Propagation: Two-Ray Model 57 -- 2.8.1 Two-Ray Model in a Nondispersive Medium 58 -- 2.8.2 Two-Ray Model due to LOS and Ground Reflected Wave: Plane Earth Model 59 -- 2.8.3 Two-Ray Propagation via the Ionosphere 63 -- 2.9 General Multipath Propagation 66 -- 2.9.1 Time Dispersion due to Multipath Propagation 66.
2.9.2 Effects of Multipath Propagation in Frequency, Time and Space 69 -- 2.10 Shadow Fading: Medium Scale 77 -- 2.11 Measurement-Based Large-Scale Path Loss Models 78 -- References 82 -- 3 Radio Channel Models 85 -- 3.1 System Model for Ideal Channel: Linear Time-Invariant (LTI) Model 85 -- 3.2 Narrowband Single Input / Single Output Channels 87 -- 3.2.1 Single-Path Model 87 -- 3.2.2 Multipath Scattering Model 88 -- 3.3 Wideband Single Input / Single Output Channels 93 -- 3.3.1 Single-Path Time-Invariant Frequency Dispersive Channel Model 93 -- 3.3.2 Single-Path Time-Variant Frequency Dispersive Channel 98 -- 3.3.3 Multipath Model in a Nonfrequency Dispersive Time-Invariant Channel 99 -- 3.3.4 Multipath Propagation in a Nonfrequency Dispersive Time-Variant Channel 104 -- 3.3.5 Multipath Propagation in a Frequency Dispersive Time-Variant Channel 106 -- 3.4 System Functions in a Linear Randomly Time-Variant Channel 106 -- 3.5 Simplified Channel Functions 108 -- 3.5.1 The Wide-Sense Stationary (WSS) Channel 108 -- 3.5.2 The Uncorrelated Scattering Channel (US) 109 -- 3.5.3 The Wide-Sense Stationary Uncorrelated Scattering Channel (WSSUS) 109 -- 3.6 Coherence Functions 110 -- 3.7 Power Delay Profile and Doppler Spectrum 111 -- 3.8 Parameters of the Power Delay Profile and Doppler Spectrum 111 -- 3.8.1 First and Second Order Moments 111 -- 3.8.2 Delay Window and Delay Interval 114 -- 3.8.3 Angular Dispersion 115 -- 3.9 The Two-Ray Model Revisited in a Stochastic Channel 115 -- 3.10 Multiple Input / Multiple Output Channels 115 -- 3.10.1 Desirable Channel Properties for Narrowband MIMO Systems 116 -- 3.10.2 MIMO Capacity for Spatial Multiplexing 118 -- 3.11 Capacity Limitations for MIMO Systems 120 -- 3.12 Effect of Correlation Using Stochastic Models 120 -- 3.12.1 Capacity Expressions Based on Stochastic Correlation Models 121 -- 3.12.2 Capacity Expressions Based on Uniform and Exponential Correlation Models 122 -- 3.12.3 The Kronecker Stochastic Model 123 -- 3.13 Correlation Effects with Physical Channel Models 123.
3.13.1 Distributed Scattering Model 124 -- 3.13.2 Single-Ring Model 125 -- 3.13.3 Double-Ring Model 126 -- 3.13.4 COST 259 Models 127 -- 3.13.5 Multidimensional Parametric Channel Model 127 -- 3.13.6 Effect of Antenna Separation, Antenna Coupling and Angular Spread on Channel Capacity 128 -- 3.13.7 Effect of Mutual Coupling 130 -- 3.14 Effect of Number of Scatterers on Channel Capacity 134 -- 3.14.1 Free Space Propagation 135 -- 3.14.2 Limited Number of Multipath Components 136 -- 3.15 Keyholes 137 -- 3.16 Rician Channels 141 -- 3.17 Wideband MIMO Channels 143 -- 3.17.1 Wideband Channel Model 145 -- References 145 -- 4 Radio Channel Sounders 149 -- 4.1 Echoes of Sound and Radio 149 -- 4.2 Definitions and Objectives of Radio Sounders and Radar 151 -- 4.2.1 Modes of Operation 151 -- 4.2.2 Basic Parameters 152 -- 4.3 Waveforms 152 -- 4.4 Single-Tone CW Waveforms 153 -- 4.4.1 Analysis of a Single-Tone System 153 -- 4.5 Single-Tone Measurements 158 -- 4.5.1 Measurement Configurations 158 -- 4.5.2 Triggering of Data Acquisition 160 -- 4.5.3 Strategy of CW Measurements 162 -- 4.6 Spaced Tone Waveform 164 -- 4.7 Pulse Waveform 166 -- 4.7.1 Properties of the Pulse Waveform 167 -- 4.7.2 Factors Affecting the Resolution of Pulse Waveforms 171 -- 4.7.3 Typical Configuration of a Pulse Sounder 171 -- 4.7.4 Practical Considerations for Pulse Sounding 171 -- 4.8 Pulse Compression Waveforms 174 -- 4.8.1 Ideal Correlation Properties of Pulse Compression Sounding Waveforms 175 -- 4.8.2 Pulse Compression Detectors 177 -- 4.8.3 Comment on Pulse Compression Detectors 180 -- 4.9 Coded Pulse Signals 182 -- 4.9.1 Barker Codes (1953) 182 -- 4.9.2 PRBS Codes 184 -- 4.9.3 PRBS Related Codes: Gold Codes 192 -- 4.9.4 Kasami Code 194 -- 4.9.5 Loosely Synchronous Codes 196 -- 4.10 Serial Correlation Detection of Coded Transmission 196 -- 4.10.1 Sliding Correlator 196 -- 4.10.2 Stepped Cross Correlator 198 -- 4.11 Comment Regarding Coded Transmission 198 -- 4.12 Frequency Modulated Continuous Wave (FMCW) Signal 199.
Record Nr. UNINA-9910139058403321
Salous Sana  
Hoboken : , : John Wiley & Sons Inc., , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Radio propagation measurement and channel modelling / / Sana Salous
Radio propagation measurement and channel modelling / / Sana Salous
Autore Salous Sana
Pubbl/distr/stampa Hoboken : , : John Wiley & Sons Inc., , 2013
Descrizione fisica 1 online resource (423 p.)
Disciplina 621.3841/1
Soggetto topico Shortwave radio - Transmitters and transmission - Measurement
Radio wave propagation - Measurement
Wireless communication systems
ISBN 1-118-50228-0
1-118-50232-9
1-299-31598-4
1-118-50231-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 4.12.1 Matched Filter Detector 199 -- 4.12.2 Heterodyne Detector of FMCW Signals 203 -- 4.12.3 Practical Consideration of Detection Methods of FMCW Signals 207 -- 4.13 Range Doppler Ambiguity of Chirp Signals: Advanced Waveforms 207 -- 4.13.1 Three-Cell Structure 208 -- 4.13.2 Multiple WRF Structure 210 -- 4.13.3 Target Movement 211 -- 4.13.4 Doppler Shift Estimation 211 -- 4.14 Architectures of Chirp Sounders 213 -- 4.15 Monostatic Operation of FMCW Sounder/Radar 217 -- 4.15.1 Reduction of Effective Mean Received Power 218 -- 4.15.2 Spreading of the Spectrum and Interference 219 -- 4.15.3 Blind Ranges and Range Ambiguity 220 -- 4.15.4 Selection Criteria for Switching Sequences 221 -- 4.15.5 Considerations for Edge Weighting 224 -- 4.15.6 Length of the Window 224 -- 4.15.7 Window Functions 224 -- 4.15.8 Interpolation and Quantization 225 -- 4.16 Single and Multiple Antenna Sounder Architectures 225 -- 4.16.1 Single Input Single Output (SISO) Sounders 226 -- 4.16.2 MISO, SIMO and MIMO Measurements with SISO Sounders 227 -- 4.16.3 Semi-Sequential MIMO Sounders 228 -- 4.16.4 Parallel MIMO Sounders 228 -- 4.17 Ultra-wideband (UWB) Channel Sounders 232 -- 4.18 Sounder Design 233 -- 4.18.1 Sounder for Indoor Radio Channels in the UHF Band 239 -- 4.18.2 Sounder for UHF Frequency Division Duplex Links for Outdoor Radio Channels 239 -- 4.18.3 Sounder for Multiple Frequency Links for Outdoor Radio Channels 239 -- 4.19 Performance Tests of a Channel Sounder and Calibration 239 -- 4.19.1 Ambiguity Function 241 -- 4.19.2 Linearity Test 242 -- 4.19.3 Frequency Response 243 -- 4.19.4 Calibration of Automatic Gain Control 243 -- 4.19.5 Isolation between Multiple Channels 245 -- 4.19.6 Sensitivity and Dynamic Range 246 -- 4.19.7 Effect of Interference on the Dynamic Range 249 -- 4.19.8 Stability of Frequency Sources 251 -- 4.19.9 Temperature Variations 251 -- 4.20 Overall Data Acquisition and Calibration 251 -- References 251 -- 5 Data Analysis 255 -- 5.1 Data Validation 255 -- 5.2 Spectral Analysis via the Discrete Fourier Transform 256.
5.3 DFT Analysis of the FMCW Channel Sounder Using a Heterodyne Detector 259 -- 5.3.1 Snapshot Impulse Response Analysis 260 -- 5.3.2 Frequency Response Analysis 263 -- 5.3.3 Estimation of the Delay Doppler Function 266 -- 5.4 Spectral Analysis of Network Analyzer Data via the IDFT 268 -- 5.5 DFT Analysis of CW Measurements for Estimation of the Doppler Spectrum 268 -- 5.6 Estimation of the Channel Frequency Response via the Hilbert Transform 269 -- 5.7 Parametric Modelling 269 -- 5.7.1 ARMA Modelling 271 -- 5.7.2 AR Modelling 271 -- 5.7.3 Practical Implementation of Parametric Modelling 271 -- 5.7.4 Parametric Modelling for Interference Reduction 272 -- 5.7.5 Parametric Modelling for Enhancement of Multipath Resolution 274 -- 5.8 Estimation of Power Delay Profile 276 -- 5.8.1 Noise Threshold 277 -- 5.8.2 Stationarity Test 280 -- 5.9 Small-Scale Characterization 286 -- 5.9.1 Time Domain Parameters 287 -- 5.9.2 Estimation of the Coherent Bandwidth 288 -- 5.9.3 Statistical Modelling of the Time Variations of the Channel Response 291 -- 5.10 Medium/Large-Scale Characterization 292 -- 5.10.1 CDF Representation 292 -- 5.10.2 Estimation of Path Loss 293 -- 5.10.3 Relating RMS Delay Spread to Path Loss and Distance 296 -- 5.10.4 Frequency Dependence of Channel Parameters 299 -- 5.11 Multiple Antenna Array Processing for Estimation of Direction of Arrival 301 -- 5.11.1 Theoretical Considerations for the Estimation of Direction of Arrival 303 -- 5.11.2 Spectral-Based Array Processing Techniques 308 -- 5.11.3 Parametric Methods 312 -- 5.11.4 Joint Parametric Techniques 316 -- 5.12 Practical Considerations of DOA Estimation 319 -- 5.12.1 Choice of Antenna Array 320 -- 5.12.2 Array Calibration 322 -- 5.12.3 Estimation of Direction of Arrival 326 -- 5.12.4 Estimation of Direction of the Arrival/Direction of Departure 331 -- 5.13 Estimation of MIMO Capacity 333 -- References 333 -- 6 Radio Link Performance Prediction 337 -- 6.1 Radio Link Simulators 337 -- 6.2 Narrowband Stochastic Radio Channel Simulator 338.
6.2.1 Quadrature Amplitude Modulation Simulator 339 -- 6.2.2 Filtered Noise Method 339 -- 6.2.3 Sum of Sinusoids Method (Jakes Method) 341 -- 6.2.4 Frequency Domain Method 343 -- 6.2.5 Reverberation Chambers (or Mode-Stirred Chambers) 344 -- 6.3 Wideband Stochastic Channel Simulator 346 -- 6.3.1 Time Domain Channel Simulators 346 -- 6.3.2 Frequency Domain Simulators 348 -- 6.4 Frequency Domain Implementation Using Fast Convolution 349 -- 6.5 Channel Block Realization from Measured Data 351 -- 6.6 Theoretical Prediction of System Performance in Additive White Gaussian Noise 353 -- 6.6.1 Matched Filter and Correlation Detector 354 -- 6.6.2 Bit Error Rate of the Matched Filter Detector in AWGN 356 -- 6.6.3 Bit Error Rate with Noncoherent Detectors 357 -- 6.6.4 Comparison of BER of Coherent and Noncoherent Detectors 358 -- 6.6.5 Higher Order Modulation 358 -- 6.7 Prediction of System Performance in Fading Channels 361 -- 6.7.1 Narrowband Signals 361 -- 6.7.2 Wideband Signals 363 -- 6.8 Bit Error Rate Prediction for Wireless Standards 364 -- 6.8.1 IEEE 802.16-d Standard 365 -- 6.8.2 IEEE 802.11-a Standard 371 -- 6.8.3 Third Generation WCDMA Standard 372 -- 6.9 Enhancement of Performance Using Diversity Gain 376 -- 6.9.1 Diversity Combining Methods 377 -- 6.9.2 Diversity Gain Prediction of Rayleigh Fading Channels from Measurements in a Reverberation Chamber 382 -- References 383 -- Appendix 1 385 -- A.1 Probability Distribution Functions 385 -- A.2 The Gaussian (Normal) Distribution 385 -- A.3 The Rayleigh Distribution 387 -- A.4 The Rician Distribution 388 -- A.5 The Nakagami m-Distribution 389 -- A.6 The Weibull Distribution 390 -- A.7 The Log-Normal Distribution 390 -- A.8 The Suzuki Distribution 391 -- A.9 The Chi-Square Distribution 391 -- References 391 -- Appendix 2 393 -- Index 395.
-- Foreword xiii -- Preface xv -- List of Symbols xvii -- Acronyms and Abbreviations xix -- 1 Radio Wave Fundamentals 1 -- 1.1 Maxwell's Equations 1 -- 1.2 Free Space Propagation 3 -- 1.3 Uniform Plane Wave Propagation 3 -- 1.4 Propagation of Electromagnetic Waves in Isotropic and Homogeneous Media 5 -- 1.5 Wave Polarization 8 -- 1.6 Propagation Mechanisms 11 -- 1.6.1 Reflection by an Isotropic Material 12 -- 1.6.2 Reflection/Refraction by an Anisotropic Material 18 -- 1.6.3 Diffuse Reflection/Scattering 19 -- 1.6.4 Diffraction 20 -- 1.7 Propagation in the Earth's Atmosphere 21 -- 1.7.1 Properties of the Earth's Atmosphere 21 -- 1.7.2 Radio Waves in the Ionosphere 25 -- 1.8 Frequency Dispersion of Radio Waves 29 -- 1.8.1 Phase Velocity versus Group Velocity 30 -- 1.8.2 Group Path versus Phase Path 31 -- 1.8.3 Phase Path Stability: Doppler Shift/Dispersion 32 -- References 33 -- 2 Radio Wave Transmission 35 -- 2.1 Free Space Transmission 35 -- 2.1.1 Path Loss 35 -- 2.1.2 Relating Power to the Electric Field 37 -- 2.2 Transmission Loss of Radio Waves in the Earth's Atmosphere 38 -- 2.2.1 Attenuation due to Gases in the Lower Atmosphere and Rain: Troposphere 38 -- 2.2.2 Attenuation of Radio Waves in an Ionized Medium: Ionosphere 41 -- 2.3 Attenuation Due to Propagation into Buildings 43 -- 2.4 Transmission Loss due to Penetration into Vehicles 46 -- 2.5 Diffraction Loss 49 -- 2.5.1 Fundamentals of Diffraction Loss: Huygen's Principle 49 -- 2.5.2 Diffraction Loss Due to a Single Knife Edge: Fresnel Integral Approach 50 -- 2.6 Diffraction Loss Models 54 -- 2.6.1 Single Knife Edge Diffraction Loss 54 -- 2.6.2 Multiple Edge Diffraction Loss 55 -- 2.7 Path Loss Due to Scattering 57 -- 2.8 Multipath Propagation: Two-Ray Model 57 -- 2.8.1 Two-Ray Model in a Nondispersive Medium 58 -- 2.8.2 Two-Ray Model due to LOS and Ground Reflected Wave: Plane Earth Model 59 -- 2.8.3 Two-Ray Propagation via the Ionosphere 63 -- 2.9 General Multipath Propagation 66 -- 2.9.1 Time Dispersion due to Multipath Propagation 66.
2.9.2 Effects of Multipath Propagation in Frequency, Time and Space 69 -- 2.10 Shadow Fading: Medium Scale 77 -- 2.11 Measurement-Based Large-Scale Path Loss Models 78 -- References 82 -- 3 Radio Channel Models 85 -- 3.1 System Model for Ideal Channel: Linear Time-Invariant (LTI) Model 85 -- 3.2 Narrowband Single Input / Single Output Channels 87 -- 3.2.1 Single-Path Model 87 -- 3.2.2 Multipath Scattering Model 88 -- 3.3 Wideband Single Input / Single Output Channels 93 -- 3.3.1 Single-Path Time-Invariant Frequency Dispersive Channel Model 93 -- 3.3.2 Single-Path Time-Variant Frequency Dispersive Channel 98 -- 3.3.3 Multipath Model in a Nonfrequency Dispersive Time-Invariant Channel 99 -- 3.3.4 Multipath Propagation in a Nonfrequency Dispersive Time-Variant Channel 104 -- 3.3.5 Multipath Propagation in a Frequency Dispersive Time-Variant Channel 106 -- 3.4 System Functions in a Linear Randomly Time-Variant Channel 106 -- 3.5 Simplified Channel Functions 108 -- 3.5.1 The Wide-Sense Stationary (WSS) Channel 108 -- 3.5.2 The Uncorrelated Scattering Channel (US) 109 -- 3.5.3 The Wide-Sense Stationary Uncorrelated Scattering Channel (WSSUS) 109 -- 3.6 Coherence Functions 110 -- 3.7 Power Delay Profile and Doppler Spectrum 111 -- 3.8 Parameters of the Power Delay Profile and Doppler Spectrum 111 -- 3.8.1 First and Second Order Moments 111 -- 3.8.2 Delay Window and Delay Interval 114 -- 3.8.3 Angular Dispersion 115 -- 3.9 The Two-Ray Model Revisited in a Stochastic Channel 115 -- 3.10 Multiple Input / Multiple Output Channels 115 -- 3.10.1 Desirable Channel Properties for Narrowband MIMO Systems 116 -- 3.10.2 MIMO Capacity for Spatial Multiplexing 118 -- 3.11 Capacity Limitations for MIMO Systems 120 -- 3.12 Effect of Correlation Using Stochastic Models 120 -- 3.12.1 Capacity Expressions Based on Stochastic Correlation Models 121 -- 3.12.2 Capacity Expressions Based on Uniform and Exponential Correlation Models 122 -- 3.12.3 The Kronecker Stochastic Model 123 -- 3.13 Correlation Effects with Physical Channel Models 123.
3.13.1 Distributed Scattering Model 124 -- 3.13.2 Single-Ring Model 125 -- 3.13.3 Double-Ring Model 126 -- 3.13.4 COST 259 Models 127 -- 3.13.5 Multidimensional Parametric Channel Model 127 -- 3.13.6 Effect of Antenna Separation, Antenna Coupling and Angular Spread on Channel Capacity 128 -- 3.13.7 Effect of Mutual Coupling 130 -- 3.14 Effect of Number of Scatterers on Channel Capacity 134 -- 3.14.1 Free Space Propagation 135 -- 3.14.2 Limited Number of Multipath Components 136 -- 3.15 Keyholes 137 -- 3.16 Rician Channels 141 -- 3.17 Wideband MIMO Channels 143 -- 3.17.1 Wideband Channel Model 145 -- References 145 -- 4 Radio Channel Sounders 149 -- 4.1 Echoes of Sound and Radio 149 -- 4.2 Definitions and Objectives of Radio Sounders and Radar 151 -- 4.2.1 Modes of Operation 151 -- 4.2.2 Basic Parameters 152 -- 4.3 Waveforms 152 -- 4.4 Single-Tone CW Waveforms 153 -- 4.4.1 Analysis of a Single-Tone System 153 -- 4.5 Single-Tone Measurements 158 -- 4.5.1 Measurement Configurations 158 -- 4.5.2 Triggering of Data Acquisition 160 -- 4.5.3 Strategy of CW Measurements 162 -- 4.6 Spaced Tone Waveform 164 -- 4.7 Pulse Waveform 166 -- 4.7.1 Properties of the Pulse Waveform 167 -- 4.7.2 Factors Affecting the Resolution of Pulse Waveforms 171 -- 4.7.3 Typical Configuration of a Pulse Sounder 171 -- 4.7.4 Practical Considerations for Pulse Sounding 171 -- 4.8 Pulse Compression Waveforms 174 -- 4.8.1 Ideal Correlation Properties of Pulse Compression Sounding Waveforms 175 -- 4.8.2 Pulse Compression Detectors 177 -- 4.8.3 Comment on Pulse Compression Detectors 180 -- 4.9 Coded Pulse Signals 182 -- 4.9.1 Barker Codes (1953) 182 -- 4.9.2 PRBS Codes 184 -- 4.9.3 PRBS Related Codes: Gold Codes 192 -- 4.9.4 Kasami Code 194 -- 4.9.5 Loosely Synchronous Codes 196 -- 4.10 Serial Correlation Detection of Coded Transmission 196 -- 4.10.1 Sliding Correlator 196 -- 4.10.2 Stepped Cross Correlator 198 -- 4.11 Comment Regarding Coded Transmission 198 -- 4.12 Frequency Modulated Continuous Wave (FMCW) Signal 199.
Record Nr. UNINA-9910807655403321
Salous Sana  
Hoboken : , : John Wiley & Sons Inc., , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui