Vai al contenuto principale della pagina

Experimental Methods for Membrane Applications in Desalination and Water Treatment



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Salinas-Rodriguez Sergio G Visualizza persona
Titolo: Experimental Methods for Membrane Applications in Desalination and Water Treatment Visualizza cluster
Pubblicazione: London : , : IWA Publishing, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (489 pages)
Disciplina: 628.164
Soggetto topico: Membranes (Technology)
Water treatment plants
Altri autori: VillacorteLoreen O  
Nota di contenuto: Intro -- Cover -- Contents -- Foreword -- Contributors -- About the editors -- Chapter 1: Feedwater Quality Guidelines and Assessment Methods for Membrane-based Desalination -- 1.1 INTRODUCTION -- 1.2 PARTICULATE FOULING POTENTIAL -- 1.3 INORGANIC FOULING AND SCALING POTENTIAL -- 1.4 ORGANIC FOULING POTENTIAL -- 1.4.1 Organic carbon -- 1.4.2 UV absorbance and fluorescence -- 1.4.3 LC-OCD -- 1.4.4 TEP -- 1.4.5 Oil and grease -- 1.5 BIOFOULING POTENTIAL -- 1.5.1 Bacterial growth potential -- 1.5.2 Assimilable organic carbon -- 1.5.3 Biodegradable dissolved organic carbon -- 1.5.4 Phosphate -- 1.6 OUTLOOK AND OPPORTUNITIES -- 1.7 ABBREVIATIONS AND SYMBOLS -- 1.8 REFERENCES -- Part 1: Membrane processes -- Chapter 2: Microfiltration and ultrafiltration -- 2.1 INTRODUCTION -- 2.1.1 Advantages of ultrafiltration compared to conventional treatment -- 2.2 DESIGN AND OPTIMIZE MEMBRANE PROCESSES -- 2.3 OBJECTIVE OF THE FILTRATION PROCESS -- 2.4 MEMBRANE TYPES -- 2.5 BASIC EQUATIONS -- 2.6 NORMALIZATION -- 2.7 MEMBRANE FOULING -- 2.8 SUSTAINABLE FLUX -- 2.9 MEMBRANE DESIGN AND MODULE -- 2.10 PRETREATMENT -- 2.11 CLEANINGS -- 2.11.1 Optimization of hydraulic cleaning -- 2.12 MEMBRANE CASCADES -- 2.13 SUMMARY -- 2.14 REFERENCES -- Chapter 3: Reverse Osmosis and Nanofiltration -- 3.1 THE RISE OF REVERSE OSMOSIS -- 3.2 SUSTAINAIBLITY OF REVERSE OSMOSIS -- 3.3 UNDERSTANDING THE OSMOSIS PROCESS -- 3.3.1 Semi-permeable membranes -- 3.3.2 The reverse osmosis process -- 3.4 EQUATIONS -- 3.4.1 Fundamental equations -- 3.4.1.1 Osmotic pressure -- 3.4.1.2 Water flux -- 3.4.1.3 Salt transport -- 3.4.1.4 The difference between convective and concentration driven flows -- 3.4.2 System equations -- 3.4.3 Factors affecting membrane performance -- 3.4.3.1 Feed pressure -- 3.4.3.2 Feed concentration -- 3.4.3.3 Feed temperature -- 3.4.3.4 Concentration polarization.
3.5 REVERSE OSMOSIS MEMBRANES -- 3.5.1 The significance of desalination -- 3.6 PERFORMANCE MONITORING -- 3.7 NORMALIZATION -- 3.7.1 Why normalization matters -- 3.7.2 Equations -- 3.7.2.1 Normalized permeate flow -- 3.7.2.2 Normalized salt rejection -- 3.7.2.3 Normalized pressure drop -- 3.8 FOULING -- 3.8.1 Biofouling -- 3.8.2 Organic fouling -- 3.8.3 Particulate fouling -- 3.8.4 Scaling -- 3.8.5 Integrity failure -- 3.9 REFERENCES -- Chapter 4: Forward Osmosis -- 4.1 INTRODUCTION: PRINCIPLES OF FORWARD OSMOSIS -- 4.2 MATERIALS AND EXPERIMENTAL SET-UP -- 4.2.1 Membrane configurations -- 4.2.2 Experimental modes -- 4.2.3 Draw solutions: properties, regeneration, types and selection criteria -- 4.3 EXPERIMENTAL METHODS -- 4.3.1. Typical parameters and phenomena -- 4.3.2 FO process design constraints and considerations -- 4.3.3 Best practices Transmembrane Pressure (TMP) -- 4.4 DATA ANALYSIS: BASIC FO PROCESS DESIGN -- 4.4.1 FO Fundamental Equations -- 4.4.2 FO Module Mass Balance -- 4.4.3 FO Design Considerations -- 4.5 APPLICATION EXAMPLES -- 4.6 OUTLOOK -- 4.7 REFERENCES -- Chapter 5: Membrane Distillation -- 5.1 INTRODUCTION -- 5.2 MATERIALS, EXPERIMENTAL SET-UP -- 5.2.1 MD membranes -- 5.2.1.1 Membrane properties -- 5.2.1.2 Membrane materials -- 5.2.2 Experimental set-up -- 5.2.2.1 MD confi gurations -- 5.2.3 Process -- 5.2.3.1 MD system -- 5.2.3.2 Operating parameters -- 5.2.4 MD modules -- 5.3 METHODS -- 5.3.1 Process measurements and calculations -- 5.3.1.1 Permeate flux -- 5.3.1.2 Solute rejection -- 5.3.1.3 Logarithmic temperature difference -- 5.3.2 Membrane characterization -- 5.3.2.1 Physical and morphology properties -- 5.3.2.2 Chemical properties (a) Elemental composition -- 5.3.2.3 Thermal properties (a) Thermal conductivity -- 5.5 OUTLOOK -- 5.6 REFERENCES -- Part 2: Particulate fouling -- Chapter 6: Silt Density Index -- 6.0 ABSTRACT.
6.1 DEVELOPMENT OF THE FOULING INDEX -- 6.2 SILT AS A COMPONENT OF MEMBRANE FOULING -- 6.3 STANDARDIZATON OF THE SILT DENSITY INDEX -- 6.4 METHODS AND PROCEDURES -- 6.5 LIMITATIONS OF THE SDI -- 6.6 ALTERNATIVES TO THE SDI -- 6.7 SUMMARY -- 6.8 REFERENCES -- Chapter 7: Modified Fouling Index (MFI-0.45) -- 7.1 INTRODUCTION -- 7.2 THEORY PARTICULATE FOULING -- 7.3 MEASURING MFI-0.45 -- 7.3.1 Filtration set-up and materials -- 7.3.1.1 Membrane filters -- 7.3.1.2 Filter holder -- 7.3.1.3 Feedwater reservoir -- 7.3.1.4 Electronic mass balance -- 7.3.1.5 Software for data acquisition -- 7.3.1.6 Pressure regulator and gauge -- 7.3.1.7 Pressure transducer -- 7.3.1.8 Non-plugging water -- 7.3.2 MFI-0.45 testing procedure -- 7.3.3 MFI-0.45 calculation procedure -- 7.4 MEMBRANE PROPERTIES OF COMMERCIAL MEMBRANES -- 7.5 EFFECT OF FILTER MATERIAL ON MFI-0.45 -- 7.5.1 Effect of membrane support holder -- 7.6 APPLICATION: WATER QUALITY MONITORING OF NORTH SEA WATER -- 7.7 MONITORING OF MFI-0.45 IN A FULL-SCALE DESALINATION PLANT -- 7.8 REFERENCES -- Chapter 8: Modified Fouling Index Ultrafiltration (MFI-UF) Constant Flux -- 8.1 INTRODUCTION -- 8.2 THEORY PARTICULATE FOULING -- 8.2.1 Deposition factor -- 8.2.2 The particulate fouling prediction model -- 8.3 MEASURING MFI-UF CONSTANT FLUX -- 8.3.1 Filtration set-up and materials -- 8.3.1.1 Membrane filters -- 8.3.1.2 Constant flow pump -- 8.3.1.4 Membrane filter holder -- 8.3.1.5 Syringe -- 8.3.1.6 Ultra-pure water -- 8.3.1.7 Tubing -- 8.3.1.8 Software -- 8.3.2 Membrane cleaning and conditioning -- 8.3.3 MFI-UF testing procedure -- 8.3.3.1 Selection of filtration flux rate -- 8.3.4 Calculation procedure -- 8.3.4.1 Example of membrane resistance calculation of UPW -- 8.3.4.2 Example of MFI-UF calculation -- 8.3.5 Reproducibility -- 8.3.6 Blank and limit of detection -- 8.3.7 Sample storage.
8.3.8 Concentration of particles -- 8.3.9 Membrane material -- 8.4 VARIABLES AND APPLICATIONS OF THE MFI-UF -- 8.4.1 Plant profiling and water quality monitoring -- 8.4.2 Flux rate -- 8.4.3 Predicting rate of fouling of seawater RO systems -- 8.4.4 Comparing fouling indices -- 8.5 REFERENCES -- Part 3: Inorganic fouling and scaling -- Chapter 9: Inorganic Fouling: Characterization Tools and Mitigation -- 9.1 INTRODUCTION -- 9.2 MAIN COMPONENTS OF INORGANIC FOULING -- 9.2.1 Colloidal matter/particulate -- 9.2.2 Metals -- 9.2.3 Scaling -- 9.2.4 OTHER COMPONENTS -- 9.3 METHODS FOR INORGANIC FOULING IDENTIFICATION -- 9.4 METHODS FOR INORGANIC FOULING REMOVAL -- 9.5 REFERENCES -- Chapter 10: Assessing Scaling Potential with Induction Time and a Once-through Laboratory Scale RO System -- 10.1 INTRODUCTION -- 10.2 INDUCTION TIME MEASUREMENTS -- 10.2.1 Experimental setup -- 10.2.1.1 Glass reactor -- 10.2.1.3 pH meter -- 10.2.1.4 Peristaltic pump -- 10.2.1.5 Thermostat -- 10.2.2 Experimental procedure -- 10.2.2.1 Preparation of artificial brackish water -- 10.2.2.2 Induction time measurement -- 10.2.3 Calculation of induction time -- 10.2.4 Cleaning of the reactor -- 10.2.5 Example of application of induction time -- 10.3 ONCE THROUGH LAB-SCALE RO SYSTEM -- 10.3.1 Experimental set-up -- 10.3.2 Experimental protocol -- 10.3.3 Example of application -- 10.4 OUTLOOK AND FINAL COMMENTS -- 10.5 REFERENCES -- Part 4: Organic fouling -- Chapter 11: Practical Considerations of Using LC-OCD for Organic Matter Analysis in Seawater -- 11.1 INTRODUCTION -- 11.2 LC-OCD ANALYSIS -- 11.2.1 Instrumentation and chromatogram integration -- 11.2.2 Effect of salinity on organic characterization and calibration -- 11.2.3 LEVEL OF DETECTION -- 11.2.4 REPRODUCIBILITY OF LC-OCD -- 11.2.5 CHARACTERISATION OF ORGANIC MIXTURES -- 11.2.6 Applications.
11.2.6.1 OM composition in seawater -- 11.2.6.2 Fouling behaviour of organic matter -- 11.2.6.3 Effectiveness of pretreatment methods -- 11.3 CONCLUSIONS -- 11.4 REFERENCES -- Chapter 12: Fluorescence Excitation Emission Matrix (EEM) Spectroscopy -- 12.1 INTRODUCTION -- 12.2 SAMPLING & -- STORAGE -- 12.3 BENCHTOP INSTRUMENTATION -- 12.4 QUALITY ASSURANCE -- 12.5 INTERFERENCES -- 12.6 DATA PROCESSING -- 12.7 DATA ANALYSIS -- 12.7.1 PARAFAC -- 12.8 APPLICATION IN MEMBRANE SYSTEMS -- 12.9 REFERENCES -- Chapter 13: Transparent Exopolymer Particles -- 13.1 INTRODUCTION -- 13.2 QUANTIFICATION METHODS -- 13.2.1 Alcian blue dye preparation -- 13.2.2 TEP0.4µm measurement -- 13.2.3 TEP10kDa measurement -- 13.2.4 Method calibration -- 13.2.4.1 Xanthan gum standard preparation -- 13.2.4.2 TEP0.4µm calibration -- 13.2.4.3 TEP0.4µm calibration -- 13.2.4.4 TEP10kDa calibration -- 13.2.5 Other considerations -- 13.2.5.1 Limit of detection -- 13.2.5.2 Impact of storage on TEP concentration -- 13.2.6 Application and interpretation -- 13.3 SUMMARY AND OUTLOOK -- 13.4 REFERENCES -- Part 5: Biological fouling -- Chapter 14: Genomics Tools to Study Membrane-Based Systems -- 14.1 INTRODUCTION -- 14.2 EXPERIMENTAL DESIGN AND SAMPLE PREPARATION -- 14.2.1 Experimental Design in a Metagenomics -- 14.2.2 Sample Collection and Preservation -- 14.2.3 DNA Extraction -- 14.2.4 Library Preparation -- 14.2.5 Sequencing platforms -- 14.3 BIOINFORMATICS ANALYSIS -- 14.3.1 Data Pre-treatment -- 14.3.2 Amplicon-based approach -- 14.3.3 Metagenomics, read-based approach -- 14.3.4 Metagenomics, assembly-based approach -- 14.3.5 Metagenome-assembled Genome (MAG) Binning -- 14.3.6 Supervised and unsupervised binning -- 14.3.7 Functional annotation -- 14.3.8 Genome-resolved Metatranscriptomics -- 14.4 DATA SHARING AND STORAGE -- 14.5 BIOINFORMATICS ANALYSIS WORKFLOW EXAMPLES.
14.5.1 Amplicon Sequences Processing Workflow.
Sommario/riassunto: This book focuses on experimental methods for membrane applications in desalination and water treatment, addressing the critical issue of water quality. It explores various membrane processes such as microfiltration, ultrafiltration, reverse osmosis, forward osmosis, and membrane distillation. Key topics include fouling, scaling, performance assessment, and modeling of membrane systems. The book aims to improve the feasibility and effectiveness of these technologies to tackle global water scarcity, particularly in developing countries. It serves as a resource for engineering students, researchers, plant operators, and professionals in the water sector, offering insights from experts in the field.
Titolo autorizzato: Experimental Methods for Membrane Applications in Desalination and Water Treatment  Visualizza cluster
ISBN: 9781789062984
1789062985
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910847393603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui