Introduction to quantum mechanics 1 : thermal radiation and experimental facts regarding the quantization of matter / / Ibrahima Sakho |
Autore | Sakho Ibrahima |
Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : Iste : , : Wiley, , [2019] |
Descrizione fisica | 1 online resource (336 pages) |
Disciplina | 530.12 |
Collana | THEi Wiley ebooks. |
Soggetto topico | Quantum theory |
ISBN |
1-119-67141-8
1-119-67145-0 1-119-67144-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910555199103321 |
Sakho Ibrahima | ||
London, England ; ; Hoboken, New Jersey : , : Iste : , : Wiley, , [2019] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Introduction to quantum mechanics 1 : thermal radiation and experimental facts regarding the quantization of matter / / Ibrahima Sakho |
Autore | Sakho Ibrahima |
Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : Iste : , : Wiley, , [2019] |
Descrizione fisica | 1 online resource (336 pages) |
Disciplina | 530.12 |
Collana | THEi Wiley ebooks. |
Soggetto topico | Quantum theory |
ISBN |
1-119-67141-8
1-119-67145-0 1-119-67144-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910813343003321 |
Sakho Ibrahima | ||
London, England ; ; Hoboken, New Jersey : , : Iste : , : Wiley, , [2019] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Introduction to quantum mechanics 2 : wave-corpuscle, quantization & Schrödinger's equation / / Ibrahima Sakho |
Autore | Sakho Ibrahima |
Edizione | [1st edition] |
Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , [2020] |
Descrizione fisica | 1 online resource (309 pages) |
Disciplina | 530.12 |
Soggetto topico | Quantum theory |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-69494-9
1-119-69493-0 1-119-69495-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910555197703321 |
Sakho Ibrahima | ||
London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Introduction to quantum mechanics 2 : wave-corpuscle, quantization & Schrödinger's equation / / Ibrahima Sakho |
Autore | Sakho Ibrahima |
Edizione | [1st edition] |
Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , [2020] |
Descrizione fisica | 1 online resource (309 pages) |
Disciplina | 530.12 |
Soggetto topico | Quantum theory |
ISBN |
1-119-69494-9
1-119-69493-0 1-119-69495-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910678267703321 |
Sakho Ibrahima | ||
London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nuclear physics 1 : nuclear deexcitations, spontaneous nuclear reactions / / Ibrahima Sakho |
Autore | Sakho Ibrahima |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021] |
Descrizione fisica | 1 online resource (368 pages) |
Disciplina | 539.70212 |
Soggetto topico |
Nuclear physics
Nuclear physics - History |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-88146-3
1-119-88148-X 1-119-88147-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1. Overview of the Nucleus -- 1.1. Discovery of the electron -- 1.1.1. Hittorf and Crookes experiments -- 1.1.2. Perrin and Thomson experiments -- 1.1.3. Millikan experiment -- 1.2. The birth of the nucleus -- 1.2.1. Perrin and Thomson atomic model -- 1.2.2. Geiger and Marsden experiment -- 1.2.3. Rutherford scattering: Planetary atomic model -- 1.2.4. Rutherford's differential effective cross-section -- 1.3. Composition of the nucleus -- 1.3.1. Discovery of the proton -- 1.3.2. Discovery of the neutron -- 1.3.3. Internal structure of nucleons: u and d quarks -- 1.3.4. Isospin -- 1.3.5. Nuclear spin -- 1.3.6. Nuclear magnetic moment -- 1.4. Nucleus dimensions -- 1.4.1. Nuclear radius -- 1.4.2. Nuclear density, skin thickness -- 1.5. Nomenclature of nuclides -- 1.5.1. Isotopes, isobars, isotones -- 1.5.2. Mirror nuclei, Magic nuclei -- 1.6. Nucleus stability -- 1.6.1. Atomic mass unit -- 1.6.2. Segrè diagram, nuclear energy surface -- 1.6.3. Mass defect, binding energy -- 1.6.4. Binding energy per nucleon, Aston curve -- 1.6.5. Separation energy of a nucleon -- 1.6.6. Nuclear forces -- 1.7. Exercises -- 1.8. Solutions to exercises -- Chapter 2. Nuclear Deexcitations -- 2.1. Nuclear shell model -- 2.1.1. Overview of nuclear models -- 2.1.2. Individual state of a nucleon -- 2.1.3. Form of the harmonic potential -- 2.1.4. Shell structure derived from a harmonic potential -- 2.1.5. Shell structure derived from a Woods-Saxon potential -- 2.2. Angular momentum and parity -- 2.2.1. Angular momentum and parity of ground state -- 2.2.2. Angular momentum and parity of an excited state -- 2.3. Gamma deexcitation -- 2.3.1. Definition, deexcitation energy -- 2.3.2. Angular momentum and multipole order of γ-radiation.
2.3.3. Classification of γ-transitions, parity of γ-radiation -- 2.3.4. γ-transition probabi lities, Weisskopf estimates -- 2.3.5. Conserving angular momentum and parity -- 2.4. Internal conversion -- 2.4.1. Definition -- 2.4.2. Internal conversion coefficients -- 2.4.3. Partial conversion coefficients -- 2.4.4. K-shell conversion -- 2.5. Deexcitation by nucleon emission -- 2.5.1. Definition -- 2.5.2. Energy balance -- 2.5.3. Bound levels and virtual levels -- 2.5.4. Study of an example of delayed-neutron emission -- 2.6. Bethe-Weizsäcker semi-empirical mass formula -- 2.6.1. Presentation of the liquid-drop model -- 2.6.2. Bethe-Weizsäcker formula, binding energy -- 2.6.3. Volume energy, surface energy -- 2.6.4. Coulomb energy -- 2.6.5. Asymmetry energy, pairing energy -- 2.6.6. Principle of semi-empirical evaluation of coefficients in Bethe-Weizsäcker form -- 2.6.7. Isobar binding energy, the most stable isobar -- 2.7. Mass parabola equation for odd A -- 2.7.1. Expression -- 2.7.2. Determining the nuclear charge of the most stable isobar from the decay energy -- 2.7.3. Mass parabola equation for even A -- 2.8. Nuclear potential barrier -- 2.8.1. Definition, model of the rectangular potential well -- 2.8.2. Modifying the model of the rectangular potential well -- 2.9. Exercises -- 2.10. Solutions to exercises -- Chapter 3. Alpha Radioactivity -- 3.1. Experimental facts -- 3.1.1. Becquerel's observations, radioactivity -- 3.1.2. Discovery of α radioactivity and β− radioactivity -- 3.1.3. Discovery of the positron -- 3.1.4. Discovery of the neutrino, Cowan and Reines experiment -- 3.1.5. Highlighting α, β and γ radiation -- 3.2. Radioactive decay -- 3.2.1. Rutherford and Soddy's empirical law -- 3.2.2. Radioactive half-life -- 3.2.3. Average lifetime of a radioactive nucleus -- 3.2.4. Activity of a radioactive source -- 3.3. α radioactivity. 3.3.1. Balanced equation -- 3.3.2. Mass defect (loss of matter), decay energy -- 3.3.3. Decay energy diagram -- 3.3.4. Fine structure of α lines -- 3.3.5. Geiger-Nuttall law -- 3.3.6. Quantum model of α emission by tunnel effect -- 3.3.7. Estimating the radioactive half-life, Gamow factor -- 3.4. Exercises -- 3.5. Solutions to exercises -- Chapter 4. Beta Radioactivity, Radioactive Family Tree -- 4.1. Beta radioactivity -- 4.1.1. Experiment of Frédéric and Irène Joliot-Curie: discovery of artificial radioactivity -- 4.1.2. Balanced equation, β decay energy -- 4.1.3. Continuous β emission spectrum -- 4.1.4. Sargent diagram, β transition selection rules -- 4.1.5. Decay energy diagram -- 4.1.6. Condition of β + emission -- 4.1.7. Decay by electron capture -- 4.1.8. Double β decay, branching ratio -- 4.1.9. Atomic deexcitation, Auger effect -- 4.2. Radioactive family trees -- 4.2.1. Definition -- 4.2.2. Simple two-body family tree -- 4.2.3. Multi-body family tree, Bateman equations -- 4.2.4. Secular equilibrium -- 4.3. Radionuclide production by nuclear bombardment -- 4.3.1. General aspects -- 4.3.2. Production rate of a radionuclide -- 4.3.3. Production yield of a radionuclide -- 4.4. Natural radioactive series -- 4.4.1. Presentation -- 4.4.2. Thorium (4n) family -- 4.4.3. Neptunium (4n + 1) family -- 4.4.4. Uranium-235 (4n +2) family -- 4.4.5. Uranium-238 (4n + 3) family -- 4.5. Exercises -- 4.6. Solutions to exercises -- Appendices -- Appendix 1 -- Appendix 2 -- References -- Index -- EULA. |
Record Nr. | UNINA-9910555056703321 |
Sakho Ibrahima | ||
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nuclear physics 1 : nuclear deexcitations, spontaneous nuclear reactions / / Ibrahima Sakho |
Autore | Sakho Ibrahima |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021] |
Descrizione fisica | 1 online resource (368 pages) |
Disciplina | 539.70212 |
Soggetto topico |
Nuclear physics
Nuclear physics - History |
ISBN |
1-119-88146-3
1-119-88148-X 1-119-88147-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1. Overview of the Nucleus -- 1.1. Discovery of the electron -- 1.1.1. Hittorf and Crookes experiments -- 1.1.2. Perrin and Thomson experiments -- 1.1.3. Millikan experiment -- 1.2. The birth of the nucleus -- 1.2.1. Perrin and Thomson atomic model -- 1.2.2. Geiger and Marsden experiment -- 1.2.3. Rutherford scattering: Planetary atomic model -- 1.2.4. Rutherford's differential effective cross-section -- 1.3. Composition of the nucleus -- 1.3.1. Discovery of the proton -- 1.3.2. Discovery of the neutron -- 1.3.3. Internal structure of nucleons: u and d quarks -- 1.3.4. Isospin -- 1.3.5. Nuclear spin -- 1.3.6. Nuclear magnetic moment -- 1.4. Nucleus dimensions -- 1.4.1. Nuclear radius -- 1.4.2. Nuclear density, skin thickness -- 1.5. Nomenclature of nuclides -- 1.5.1. Isotopes, isobars, isotones -- 1.5.2. Mirror nuclei, Magic nuclei -- 1.6. Nucleus stability -- 1.6.1. Atomic mass unit -- 1.6.2. Segrè diagram, nuclear energy surface -- 1.6.3. Mass defect, binding energy -- 1.6.4. Binding energy per nucleon, Aston curve -- 1.6.5. Separation energy of a nucleon -- 1.6.6. Nuclear forces -- 1.7. Exercises -- 1.8. Solutions to exercises -- Chapter 2. Nuclear Deexcitations -- 2.1. Nuclear shell model -- 2.1.1. Overview of nuclear models -- 2.1.2. Individual state of a nucleon -- 2.1.3. Form of the harmonic potential -- 2.1.4. Shell structure derived from a harmonic potential -- 2.1.5. Shell structure derived from a Woods-Saxon potential -- 2.2. Angular momentum and parity -- 2.2.1. Angular momentum and parity of ground state -- 2.2.2. Angular momentum and parity of an excited state -- 2.3. Gamma deexcitation -- 2.3.1. Definition, deexcitation energy -- 2.3.2. Angular momentum and multipole order of γ-radiation.
2.3.3. Classification of γ-transitions, parity of γ-radiation -- 2.3.4. γ-transition probabi lities, Weisskopf estimates -- 2.3.5. Conserving angular momentum and parity -- 2.4. Internal conversion -- 2.4.1. Definition -- 2.4.2. Internal conversion coefficients -- 2.4.3. Partial conversion coefficients -- 2.4.4. K-shell conversion -- 2.5. Deexcitation by nucleon emission -- 2.5.1. Definition -- 2.5.2. Energy balance -- 2.5.3. Bound levels and virtual levels -- 2.5.4. Study of an example of delayed-neutron emission -- 2.6. Bethe-Weizsäcker semi-empirical mass formula -- 2.6.1. Presentation of the liquid-drop model -- 2.6.2. Bethe-Weizsäcker formula, binding energy -- 2.6.3. Volume energy, surface energy -- 2.6.4. Coulomb energy -- 2.6.5. Asymmetry energy, pairing energy -- 2.6.6. Principle of semi-empirical evaluation of coefficients in Bethe-Weizsäcker form -- 2.6.7. Isobar binding energy, the most stable isobar -- 2.7. Mass parabola equation for odd A -- 2.7.1. Expression -- 2.7.2. Determining the nuclear charge of the most stable isobar from the decay energy -- 2.7.3. Mass parabola equation for even A -- 2.8. Nuclear potential barrier -- 2.8.1. Definition, model of the rectangular potential well -- 2.8.2. Modifying the model of the rectangular potential well -- 2.9. Exercises -- 2.10. Solutions to exercises -- Chapter 3. Alpha Radioactivity -- 3.1. Experimental facts -- 3.1.1. Becquerel's observations, radioactivity -- 3.1.2. Discovery of α radioactivity and β− radioactivity -- 3.1.3. Discovery of the positron -- 3.1.4. Discovery of the neutrino, Cowan and Reines experiment -- 3.1.5. Highlighting α, β and γ radiation -- 3.2. Radioactive decay -- 3.2.1. Rutherford and Soddy's empirical law -- 3.2.2. Radioactive half-life -- 3.2.3. Average lifetime of a radioactive nucleus -- 3.2.4. Activity of a radioactive source -- 3.3. α radioactivity. 3.3.1. Balanced equation -- 3.3.2. Mass defect (loss of matter), decay energy -- 3.3.3. Decay energy diagram -- 3.3.4. Fine structure of α lines -- 3.3.5. Geiger-Nuttall law -- 3.3.6. Quantum model of α emission by tunnel effect -- 3.3.7. Estimating the radioactive half-life, Gamow factor -- 3.4. Exercises -- 3.5. Solutions to exercises -- Chapter 4. Beta Radioactivity, Radioactive Family Tree -- 4.1. Beta radioactivity -- 4.1.1. Experiment of Frédéric and Irène Joliot-Curie: discovery of artificial radioactivity -- 4.1.2. Balanced equation, β decay energy -- 4.1.3. Continuous β emission spectrum -- 4.1.4. Sargent diagram, β transition selection rules -- 4.1.5. Decay energy diagram -- 4.1.6. Condition of β + emission -- 4.1.7. Decay by electron capture -- 4.1.8. Double β decay, branching ratio -- 4.1.9. Atomic deexcitation, Auger effect -- 4.2. Radioactive family trees -- 4.2.1. Definition -- 4.2.2. Simple two-body family tree -- 4.2.3. Multi-body family tree, Bateman equations -- 4.2.4. Secular equilibrium -- 4.3. Radionuclide production by nuclear bombardment -- 4.3.1. General aspects -- 4.3.2. Production rate of a radionuclide -- 4.3.3. Production yield of a radionuclide -- 4.4. Natural radioactive series -- 4.4.1. Presentation -- 4.4.2. Thorium (4n) family -- 4.4.3. Neptunium (4n + 1) family -- 4.4.4. Uranium-235 (4n +2) family -- 4.4.5. Uranium-238 (4n + 3) family -- 4.5. Exercises -- 4.6. Solutions to exercises -- Appendices -- Appendix 1 -- Appendix 2 -- References -- Index -- EULA. |
Record Nr. | UNINA-9910829857103321 |
Sakho Ibrahima | ||
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nuclear Physics 2 : Radiochronometers and Radiopharmaceuticals |
Autore | Sakho Ibrahima |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (248 pages) |
Soggetto topico |
Nuclear physics
Nucleosynthesis |
ISBN |
9781394299034
1394299036 9781394299010 139429901X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 A Description of the Big Bang Model -- 1.1. Red-shift phenomenon in the spectrum of stars and galaxies -- 1.1.1 Doppler effect -- 1.1.2 Doppler-Fizeau effect -- 1.1.3 Doppler shift expression -- 1.2. Theoretical and experimental facts leading to the validation of the Big Bang model -- 1.2.1 From redshift observation to the "primitive atom" hypothesis -- 1.2.2 From Hubble observations to the discovery of the cosmic microwave background -- 1.3. Brief description of the chronology of the universe's evolution after the Big Bang -- 1.3.1 From singularity to the era of inflation -- 1.3.2 From baryogenesis to primordial nucleosynthesis -- 1.3.3 From the dark age of the universe to the radiative era -- 1.3.4 Star formation -- Chapter 2 The Nucleosynthesis Process -- 2.1. Nucleosynthesis -- 2.1.1 Notion of chemical elements -- 2.1.2 Definition, different nucleosynthesis processes -- 2.1.3 Primordial nucleosynthesis -- 2.1.4 Stellar nucleosynthesis -- 2.1.5 Explosive nucleosynthesis -- 2.2. Other important nucleus-forming processes, radionuclides in the environment -- 2.2.1 Triple-alpha reaction, Hoyle state -- 2.2.2 Formation process of compound nuclei, resonance states -- 2.2.3 CNO (Carbon-Nitrogen-Oxygen) cycle -- 2.2.4 Bethe-Weizsäcker cycle -- 2.2.5 Natural and artificial radionuclides in the environment -- Chapter 3 Radiochronometer Applications in Dating -- 3.1. Carbon-14 dating -- 3.1.1 A brief history of radiocarbon-14 dating -- 3.1.2 Cosmogenic isotopes: the case of carbon-14 -- 3.1.3 Radiocarbon-14 in the biosphere -- 3.1.4 Principle of 14C dating -- 3.1.5 Age correction, radiocarbon age and calendar age -- 3.1.6 Calibrating radiocarbon ages: reasons for calibration? How to calibrate? -- 3.2. Potassium-argon (K-Ar) dating -- 3.2.1 Principle of dating.
3.2.2 Basic assumptions for the K-Ar radiochronometer -- 3.2.3 Age equation -- 3.2.4 Atmospheric correction -- 3.2.5 Preparing samples for K-Ar dating -- 3.2.6 Experimental protocols for potassium and argon measurements -- 3.2.7 Overestimation of K-Ar ages -- 3.2.8 Description of the 40Ar/39Ar dating method -- 3.3. Lake dating using 210Pb, 137Cs and 7Be radiochronometers -- 3.3.1 Core drilling system -- 3.3.2 Lead-210 dating: CFCS, CRS and CIC models -- 3.3.3 Nuclear tests, Chernobyl accident -- 3.3.4 Cesium-137 dating -- 3.3.5 7Be dating -- 3.4. Uranium-thorium or uranium-lead dating -- 3.4.1 Method principle -- 3.5. Coral dating -- 3.5.1 Uranium-238 decay chain -- 3.5.2 Sampling, mechanical sample preparation -- 3.5.3 Chemical preparation of samples, X-ray diffraction analysis -- 3.5.4 Coral dating using the 238U/230Th and 235U/231Pa methods -- 3.5.5 Coral dating using the 233U/230Th method -- 3.5.6 Dating corals and speleothems using 234U/238U and 230Th/238U methods -- 3.6. File on dating archaeological objects -- 3.6.1 General points -- 3.6.2 Choice of dating method(s) -- 3.6.3 Authentication issues -- 3.6.4 Checking the validity of a date inscribed on the work -- 3.6.5 Tracing the history of a manuscript -- Chapter 4 General Information on Radiopharmaceuticals Used in Nuclear Medicine Imaging -- 4.1. Nuclear medicine -- 4.1.1 Definition, objectives -- 4.1.2 The birth of nuclear medicine -- 4.1.3 Diseases diagnosed in nuclear medicine -- 4.2. Cancer -- 4.2.1 Cell organization in the organism -- 4.2.2 Evolution of cancer cells, tumor -- 4.2.3 Carcinogenesis, metastasis -- 4.2.4 Angiogenesis, vascular endothelial growth factor (VEGF) -- 4.2.5 Tumor angiogenesis -- 4.2.6 Global cancer epidemiology data -- 4.2.7 Cancer control in Senegal -- 4.2.8 Recommendations from cancer organizations -- 4.3. General information on radiopharmaceuticals. 4.3.1 Notion of radiopharmaceuticals, specific properties -- 4.3.2 Quality control of radiopharmaceuticals -- 4.3.3 Radiochemical purity, experimental determination methods -- 4.3.4 Thin-layer chromatography applied to the determination of radiochemical purity -- 4.3.5 Determination of radionuclidic purity -- 4.4. Nuclear medicine imaging techniques: PET and SPECT -- 4.4.1 Radioisotopes used in nuclear medicine imaging -- 4.4.2 Principle of positron emission tomography (PET) -- 4.4.3 PET scan -- 4.4.4 PET scan procedure -- 4.4.5 PET/CT examination -- 4.4.6 Principle of single-photon emission computed tomography -- 4.4.7 Main scintigraphies and their uses -- 4.5. Appendices on dementia diseases -- 4.5.1 Appendix 1. Alzheimer's disease -- 4.5.2 Appendix 2. Lewy body dementia -- 4.5.3 Appendix 3. Parkinson's disease -- References -- Index -- Other titles from ISTE in Waves -- EULA. |
Record Nr. | UNINA-9910876672403321 |
Sakho Ibrahima | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nuclear Physics 3 : Radiopharmaceuticals Used in Nuclear Medicine |
Autore | Sakho Ibrahima |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (284 pages) |
Collana | ISTE Invoiced Series |
Soggetto topico |
Nuclear medicine
Diagnostic imaging |
ISBN |
9781394306381
1394306385 9781394306367 1394306369 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1. Radiological Imaging -- 1.1. Radiological imaging and nuclear medicine imaging -- 1.1.1. Medical imaging methods -- 1.1.2. Absorption coefficients and Hounsfield number -- 1.1.3. Treatment planning system (TPS) -- 1.2. X-ray imaging -- 1.2.1. Principle of X-ray production -- 1.2.2. Principle of X-ray imaging -- 1.2.3. Principle of computed tomography or scanner -- 1.3. Nuclear magnetic resonance (NMR) -- 1.3.1. Definition and principle of NMR -- 1.3.2. Nuclear magnetic moment -- 1.3.3. Physical model of NMR in biological tissues -- 1.3.4. Quantum model of Larmor precession -- 1.3.5. Excitation and magnetic resonance phenomenon -- 1.3.6. Quantum model of the magnetic resonance phenomenon -- 1.4. Magnetic resonance imaging (MRI) -- 1.4.1. Nuclear magnetic resonance and medical imaging -- 1.4.2. Magnetic resonance imaging techniques -- 1.4.3. T1 relaxation time and spin-lattice relaxation -- 1.4.4. T2 relaxation time and spin-spin relaxation -- 1.4.5. Relaxation time T2* and free induction decay (FID) -- 1.4.6. Spin echo sequence -- 1.4.7. Gradient echo sequence -- 1.4.8. The slice plane and the slice selection gradient -- 1.4.9. Frequency-encoding gradient and phase-encoding gradient -- 1.4.10. Fourier plane and MRI signal decoding -- 1.4.11. Image reconstruction -- 1.5. Ultrasound imaging -- 1.5.1. Ultrasound principle -- 1.5.2. Different elements of an ultrasound scan -- 1.5.3. The principle of Doppler ultrasound -- Chapter 2. Technetized Radiopharmaceuticals and Radiothallium-201 used in Nuclear Medicine -- 2.1. Metastable technetium-99 and thallium-201 radiotracers -- 2.1.1. Overview -- 2.1.2. Dosimetry and gamma cameras -- 2.1.3. Advantages of technetiated tracers over thallium-201 -- 2.1.4. Uses of metastable technetium-99 in brain, bone and kidney scintigraphy.
2.2. Metastable technetium-99 radiotracers -- 2.2.1. Metastable technetium-99 production line -- 2.2.2. Preparation of metastable radiotechnetium-99 -- 2.2.3. Effective half-life, biological half-life, physical half-life -- 2.3. Technetium-labeled radiopharmaceuticals used in myocardial scintigraphy -- 2.3.1. 99Mo-99mTc technetized radiopharmaceuticals -- 2.3.2. Principle of 99mTc-MIBI scintigraphy and dosimetry -- 2.3.3. Elimination of 99mTc-MIBI from the body -- 2.3.4. 99mTc-labeled tetrofosmin scintigraphy and dosimetry -- 2.4. Radiopharmaceuticals labeled with metastable technetium-99 used in lung scintigraphy -- 2.4.1. Technegas [99mTc] ventilation scintigraphy, dosimetry -- 2.4.2. [99mTc]-DTPA ventilation scintigraphy and dosimetry -- 2.4.3. 99mTc-MAA lung perfusion scintigraphy and dosimetry -- 2.5. Radiopharmaceuticals used in brain scintigraphy -- 2.5.1. 99mTc-HMPAO and 99mTc-ECD radiopharmaceutical structures and dosimetry -- 2.5.2. Characteristics of 99mTc-HMPAO and 99mTc-ECD radiopharmaceuticals -- 2.5.3. Principle of the brain scan -- 2.5.4. Preparing and carrying out the cerebral perfusion scintigraphy examination -- 2.6. Production, use and dosimetry of radiothallium-201 -- 2.6.1. Radiothallium-201 production process -- 2.6.2. Use of 201Tl radiotracer and dosimetry -- 2.6.3. Excretion of thallium-201 from the body -- 2.7. Myocardial scintigraphy -- 2.7.1. Definition and uses -- 2.7.2. Procedure -- 2.7.3. Ergometric bicycle and treadmill -- 2.7.4. Performing the stress test -- 2.7.5. Arm exercise test and exercise intensity -- 2.7.6. Examination at rest -- 2.7.7. Myocardial scintigraphy coupled with pharmacological stimulation -- 2.7.8. General information on myocardial infarction -- 2.8. Radiopharmaceuticals used in bone scintigraphy -- 2.8.1. Structure of the MDP radiopharmaceutical labeled with metastable technetium-99. 2.8.2. Principle of bone scintigraphy -- 2.9. Radiopharmaceuticals used in renal scintigraphy -- 2.9.1. Structures of DMSA and MAG3 radiopharmaceuticals labeled with metastable technetium-99 -- 2.9.2. Characteristics and properties of DMSA and dosimetry -- 2.9.3. 99mTc-DMSA static scintigraphy procedure -- 2.9.4. MAG3 characteristics and properties and dosimetry -- 2.9.5. Characteristics and properties of DTPA and dosimetry -- 2.9.6. 99mTc-TDPA and 99mTc-MAG3 dynamic scintigraphy procedure -- 2.10. Radiopharmaceuticals used in digestive scintigraphy -- 2.10.1. Definition -- 2.10.2. Standardized consensus meal labeled with metastable technetium-99 -- 2.10.3. Digestive scintigraphy procedure -- Chapter 3. Radioisotopes Fluorine-18, Metastable Krypton-81 and Iodine-123, 125 and 131 used in Nuclear Medicine -- 3.1. Properties and uses of the radiotracer 18FDG -- 3.1.1. Choice of radiofluorine-18 in positron emission tomography -- 3.1.2. Obtaining radiofluorine-18 -- 3.1.3. Synthesis of the radiopharmaceutical 18FDG -- 3.1.4. Principle of PET Scan, dosimetry -- 3.1.5. Excretion of fluorine-18 from the body -- 3.2. Properties of the 81mKr radiotracer, dosimetry -- 3.2.1. Production of the 81mKr tracer by the 81Rb-81mKr generator -- 3.2.2. 81mKr tracer ventilation scintigraphy: dosimetry -- 3.3. Lung scintigraphy examination -- 3.3.1. Procedure for the ventilation test -- 3.3.2. Perfusion examination procedure -- 3.3.3. Elimination of 99mTc and 81mKr in the body -- 3.4. Radiopharmaceuticals used in thyroid scintigraphy -- 3.4.1. Benefits of iodine -- 3.4.2. 123l radiotracer production chain -- 3.4.3. Main emissions of the 123I radiotracer -- 3.4.4. Properties of [123I] MIBG and [123I] ioflupane radiopharmaceuticals -- 3.4.5. Principle of iodine-123 scintigraphy, dosimetry -- 3.4.6. Excretion of iodine-123 from the body. 3.4.7. 131I radiotracer production chain -- 3.4.8. Main emissions of iodine-131 -- 3.4.9. Principle of iodine-131 scintigraphy: dosimetry -- 3.4.10. Excretion of iodine-131 from the body -- 3.5. General information on aerosols -- 3.5.1. Aerosol therapy: the concept of aerosol -- 3.5.2. Nebulization system: aerosol generators -- 3.5.3. Notion of median mass aerodynamic diameter (MMAD) -- 3.5.4. Particle deposition phenomena -- 3.5.5. Aerosol deposition sites and methods -- 3.6. Prostate disorders -- 3.6.1. The prostate in the urinary tract -- 3.6.2. Benign prostatic adenoma or enlargement -- 3.6.3. Prostatitis -- 3.6.4. Prostate cancer -- 3.6.5. Symptoms and diagnosis of prostate cancer -- 3.6.6. Treatment methods for prostate cancer -- 3.7. Principle of prostate brachytherapy using an iodine-125 implant -- 3.7.1. Decay diagram for radioiodine-125 -- 3.7.2. Definition of brachytherapy: LDR, HDR and PDR brachytherapy modes -- 3.7.3. Principle of implantation of prostate brachytherapy equipment -- 3.7.4. Prostatic chemotherapy -- 3.8. Appendices -- 3.8.1. Stroke -- 3.8.2. Thyroid and parathyroid scans -- References -- Index -- Other titles from ISTE in Waves -- EULA. |
Record Nr. | UNINA-9910876629203321 |
Sakho Ibrahima | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Screening constant by unit nuclear charge method : description and application to the photoionization of atomic systems / / Ibrahima Sakho |
Autore | Sakho Ibrahima |
Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2018 |
Descrizione fisica | 1 online resource (406 pages) : illustrations (some color) |
Disciplina | 539.6 |
Collana | Waves Series |
Soggetto topico |
Photoionization
Collisions (Nuclear physics) Polarization (Nuclear physics) |
ISBN |
1-119-51041-4
1-119-47694-1 1-119-51042-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part 1: Different photoionization processes, rydberg series -- Experimental and theoretical methods of photoionization -- General formalism of the screening constant by unit nuclear charge method applied to photoionization -- Part 2. Applications in the calculations of energies and natural widths of the resonance states of multi-electron atomic systems: Application to the calculation of energies of two-electron atomic systems (helium-like systems) -- Calculating the energies of three-electron atomic systems (lithium-like systems) -- Application in the resonant photoionization of atomic systems of atomic numbers z = 4-12 -- Resonant photoionization of sulfur (S) and Ar+, Se²+ and Kr+ ions. |
Record Nr. | UNINA-9910270958503321 |
Sakho Ibrahima | ||
London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Screening constant by unit nuclear charge method : description and application to the photoionization of atomic systems / / Ibrahima Sakho |
Autore | Sakho Ibrahima |
Pubbl/distr/stampa | London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2018 |
Descrizione fisica | 1 online resource (406 pages) : illustrations (some color) |
Disciplina | 539.6 |
Collana | Waves Series |
Soggetto topico |
Photoionization
Collisions (Nuclear physics) Polarization (Nuclear physics) |
ISBN |
1-119-51041-4
1-119-47694-1 1-119-51042-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part 1: Different photoionization processes, rydberg series -- Experimental and theoretical methods of photoionization -- General formalism of the screening constant by unit nuclear charge method applied to photoionization -- Part 2. Applications in the calculations of energies and natural widths of the resonance states of multi-electron atomic systems: Application to the calculation of energies of two-electron atomic systems (helium-like systems) -- Calculating the energies of three-electron atomic systems (lithium-like systems) -- Application in the resonant photoionization of atomic systems of atomic numbers z = 4-12 -- Resonant photoionization of sulfur (S) and Ar+, Se²+ and Kr+ ions. |
Record Nr. | UNINA-9910818794003321 |
Sakho Ibrahima | ||
London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|