top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Two Algebraic Byways from Differential Equations: Gröbner Bases and Quivers [[electronic resource] /] / edited by Kenji Iohara, Philippe Malbos, Masa-Hiko Saito, Nobuki Takayama
Two Algebraic Byways from Differential Equations: Gröbner Bases and Quivers [[electronic resource] /] / edited by Kenji Iohara, Philippe Malbos, Masa-Hiko Saito, Nobuki Takayama
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XI, 371 p. 56 illus., 1 illus. in color.)
Disciplina 512.24
Collana Algorithms and Computation in Mathematics
Soggetto topico Algebra
Field theory (Physics)
Algebraic geometry
Associative rings
Rings (Algebra)
Category theory (Mathematics)
Homological algebra
Differential equations
Partial differential equations
Field Theory and Polynomials
Algebraic Geometry
Associative Rings and Algebras
Category Theory, Homological Algebra
Ordinary Differential Equations
Partial Differential Equations
ISBN 3-030-26454-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I First Byway: Gröbner Bases -- 1 From Analytical Mechanical Problems to Rewriting Theory Through M. Janet -- 2 Gröbner Bases in D-modules: Application to Bernstein-Sato Polynomials -- 3 Introduction to Algorithms for D-Modules with Quiver D-Modules -- 4 Noncommutative Gröbner Bases: Applications and Generalizations -- 5 Introduction to Computational Algebraic Statistics -- Part II Second Byway: Quivers -- 6 Introduction to Representations of Quivers -- 7 Introduction to Quiver Varieties -- 8 On Additive Deligne-Simpson Problems -- 9 Applications of Quiver Varieties to Moduli Spaces of Connections on P1.
Record Nr. UNISA-996418257003316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Two Algebraic Byways from Differential Equations: Gröbner Bases and Quivers / / edited by Kenji Iohara, Philippe Malbos, Masa-Hiko Saito, Nobuki Takayama
Two Algebraic Byways from Differential Equations: Gröbner Bases and Quivers / / edited by Kenji Iohara, Philippe Malbos, Masa-Hiko Saito, Nobuki Takayama
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XI, 371 p. 56 illus., 1 illus. in color.)
Disciplina 512.24
Collana Algorithms and Computation in Mathematics
Soggetto topico Algebra
Field theory (Physics)
Geometry, Algebraic
Associative rings
Rings (Algebra)
Categories (Mathematics)
Algebra, Homological
Differential equations
Differential equations, Partial
Field Theory and Polynomials
Algebraic Geometry
Associative Rings and Algebras
Category Theory, Homological Algebra
Ordinary Differential Equations
Partial Differential Equations
ISBN 3-030-26454-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I First Byway: Gröbner Bases -- 1 From Analytical Mechanical Problems to Rewriting Theory Through M. Janet -- 2 Gröbner Bases in D-modules: Application to Bernstein-Sato Polynomials -- 3 Introduction to Algorithms for D-Modules with Quiver D-Modules -- 4 Noncommutative Gröbner Bases: Applications and Generalizations -- 5 Introduction to Computational Algebraic Statistics -- Part II Second Byway: Quivers -- 6 Introduction to Representations of Quivers -- 7 Introduction to Quiver Varieties -- 8 On Additive Deligne-Simpson Problems -- 9 Applications of Quiver Varieties to Moduli Spaces of Connections on P1.
Record Nr. UNINA-9910484850503321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui