Diagrammatics [[electronic resource] ] : lectures on selected problems in condensed matter theory / / Michael V. Sadovskii |
Autore | Sadovskii M. V (Mikhail Vissarionovich), <1948-> |
Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2006 |
Descrizione fisica | 1 online resource (359 p.) |
Disciplina | 530.4/1 |
Soggetto topico |
Condensed matter
Quantum field theory Feynman diagrams |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-91942-X
9786611919429 981-277-436-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; 1 Introduction; 1.1 Quasiparticles and Green's functions; 1.2 Diagram technique. Dyson equation; 1.3 Green's functions at finite temperatures; 2 Electron-Electron Interaction; 2.1 Diagram rules; 2.2 Electron gas with Coulomb interaction; 2.3 Polarization operator of free electron gas at T = 0; 2.4 Dielectric function of an electron gas; 2.5 Electron self-energy effective mass and damping of quasiparticles; 2.6 RKKY-oscillations; 2.7 Linear response; 2.8 Microscopic foundations of Landau-Silin theory of Fermi-liquids; 2.9 Interaction of quasiparticles in Fermi-liquid
2.10 Non-Fermi-liquid behavior3 Electron-Phonon Interaction; 3.1 Diagram rules; 3.2 Electron self-energy; 3.3 Migdal theorem; 3.4 Self-energy and spectrum of phonons; 3.5 Plasma model; 3.6 Phonons and fluctuations; 4 Electrons in Disordered Systems; 4.1 Diagram technique for ""impurity"" scattering; 4.2 Single-electron Green's function; 4.3 Keldysh model; 4.4 Conductivity and two-particle Green's function; 4.5 Bethe-Salpeter equation ""diffuson"" and ""Cooperon""; 4.6 Quantum corrections self-consistent theory of localization and Anderson transition; 4.6.1 Quantum corrections to conductivity 4.6.1.1 Technical details4.6.1.2 ""Poor man"" interpretation of quantum corrections; 4.6.2 Self-Consistent Theory of Localization; 4.6.2.1 Metallic phase; 4.6.2.2 Anderson insulator; 4.6.2.3 Frequency dispersion of the generalized diffusion coefficient; 4.7 ""Triangular"" vertex; 4.8 The role of electron-electron interaction; 5 Superconductivity; 5.1 Cooper instability; 5.2 Gorkov equations; 5.3 Superconductivity in disordered metals; 5.4 Ginzburg-Landau expansion; 5.5 Superconductors in electromagnetic field; 6 Electronic Instabilities and Phase Transitions; 6.1 Phonon spectrum instability 6.2 Peierls dielectric6.3 Peierls dielectric with impurities; 6.4 Ginzburg-Landau expansion for Peierls transition; 6.5 Charge and spin density waves in multi-dimensional systems. Excitonic insulator; 6.6 Pseudogap; 6.6.1 Fluctuations of Peierls short-range order; 6.6.2 Electron in a random field of fluctuations; 6.6.3 Electromagnetic response; 6.7 Tomonaga-Luttinger model and non Fermi-liquid behavior; Appendix A Fermi Surface as Topological Object; Appendix B Electron in a Random Field and Feynman Path Integrals; Bibliography |
Record Nr. | UNINA-9910453231303321 |
Sadovskii M. V (Mikhail Vissarionovich), <1948->
![]() |
||
Singapore ; ; Hackensack, NJ, : World Scientific, c2006 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Diagrammatics [[electronic resource] ] : lectures on selected problems in condensed matter theory / / Michael V. Sadovskii |
Autore | Sadovskii M. V (Mikhail Vissarionovich), <1948-> |
Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2006 |
Descrizione fisica | 1 online resource (359 p.) |
Disciplina | 530.4/1 |
Soggetto topico |
Condensed matter
Quantum field theory Feynman diagrams |
ISBN |
1-281-91942-X
9786611919429 981-277-436-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; 1 Introduction; 1.1 Quasiparticles and Green's functions; 1.2 Diagram technique. Dyson equation; 1.3 Green's functions at finite temperatures; 2 Electron-Electron Interaction; 2.1 Diagram rules; 2.2 Electron gas with Coulomb interaction; 2.3 Polarization operator of free electron gas at T = 0; 2.4 Dielectric function of an electron gas; 2.5 Electron self-energy effective mass and damping of quasiparticles; 2.6 RKKY-oscillations; 2.7 Linear response; 2.8 Microscopic foundations of Landau-Silin theory of Fermi-liquids; 2.9 Interaction of quasiparticles in Fermi-liquid
2.10 Non-Fermi-liquid behavior3 Electron-Phonon Interaction; 3.1 Diagram rules; 3.2 Electron self-energy; 3.3 Migdal theorem; 3.4 Self-energy and spectrum of phonons; 3.5 Plasma model; 3.6 Phonons and fluctuations; 4 Electrons in Disordered Systems; 4.1 Diagram technique for ""impurity"" scattering; 4.2 Single-electron Green's function; 4.3 Keldysh model; 4.4 Conductivity and two-particle Green's function; 4.5 Bethe-Salpeter equation ""diffuson"" and ""Cooperon""; 4.6 Quantum corrections self-consistent theory of localization and Anderson transition; 4.6.1 Quantum corrections to conductivity 4.6.1.1 Technical details4.6.1.2 ""Poor man"" interpretation of quantum corrections; 4.6.2 Self-Consistent Theory of Localization; 4.6.2.1 Metallic phase; 4.6.2.2 Anderson insulator; 4.6.2.3 Frequency dispersion of the generalized diffusion coefficient; 4.7 ""Triangular"" vertex; 4.8 The role of electron-electron interaction; 5 Superconductivity; 5.1 Cooper instability; 5.2 Gorkov equations; 5.3 Superconductivity in disordered metals; 5.4 Ginzburg-Landau expansion; 5.5 Superconductors in electromagnetic field; 6 Electronic Instabilities and Phase Transitions; 6.1 Phonon spectrum instability 6.2 Peierls dielectric6.3 Peierls dielectric with impurities; 6.4 Ginzburg-Landau expansion for Peierls transition; 6.5 Charge and spin density waves in multi-dimensional systems. Excitonic insulator; 6.6 Pseudogap; 6.6.1 Fluctuations of Peierls short-range order; 6.6.2 Electron in a random field of fluctuations; 6.6.3 Electromagnetic response; 6.7 Tomonaga-Luttinger model and non Fermi-liquid behavior; Appendix A Fermi Surface as Topological Object; Appendix B Electron in a Random Field and Feynman Path Integrals; Bibliography |
Record Nr. | UNINA-9910782328703321 |
Sadovskii M. V (Mikhail Vissarionovich), <1948->
![]() |
||
Singapore ; ; Hackensack, NJ, : World Scientific, c2006 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|