top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Hybrid control and motion planning of dynamical legged locomotion / / Nasser Sadati ... [et al.]
Hybrid control and motion planning of dynamical legged locomotion / / Nasser Sadati ... [et al.]
Pubbl/distr/stampa Hoboken, N.J. : , : Wiley, , 2012
Descrizione fisica 1 online resource (286 p.)
Disciplina 629.8/932
629.8932
Altri autori (Persone) SadatiNasser
Collana IEEE press series on systems science and engineering
Soggetto topico Mobile robots
Robots - Motion
Walking
ISBN 1-118-39372-4
1-118-39374-0
1-283-59324-6
9786613905697
1-118-39370-8
Classificazione TEC037000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface ix -- 1. Introduction 1 -- 1.1 Objectives of Legged Locomotion and Challenges in Controlling Dynamic Walking and Running 1 -- 1.2 Literature Overview 4 -- 1.2.1 Tracking of Time Trajectories 4 -- 1.2.2 Poincar'e Return Map and Hybrid Zero Dynamics 5 -- 1.3 The Objective of the Book 7 -- 1.3.1 Hybrid Zero Dynamics in Walking with Double Support Phase 7 -- 1.3.2 Hybrid Zero Dynamics in Running with an Online Motion Planning Algorithm 8 -- 1.3.3 Online Motion Planning Algorithms for Flight Phases of Running 9 -- 1.3.4 Hybrid Zero Dynamics in 3D Running 10 -- 1.3.5 Hybrid Zero Dynamics in Walking with Passive Knees 11 -- 1.3.6 Hybrid Zero Dynamics with Continuous-Time Update Laws 12 -- 2. Preliminaries in Hybrid Systems 13 -- 2.1 Basic Definitions 13 -- 2.2 Poincar'e Return Map for Hybrid Systems 16 -- 2.3 Low-Dimensional Stability Analysis 23 -- 2.4 Stabilization Problem 28 -- 3. Asymptotic Stabilization of Periodic Orbits forWalking with Double Support Phase 35 -- 3.1 Introduction 35 -- 3.2 Mechanical Model of a Biped Walker 37 -- 3.2.1 The Biped Robot 37 -- 3.2.2 Dynamics of the Flight Phase 37 -- 3.2.3 Dynamics of the Single Support Phase 39 -- 3.2.4 Dynamics of the Double Support Phase 40 -- 3.2.5 Impact Model 43 -- 3.2.6 Transition from the Double Support Phase to the Single Support Phase 45 -- 3.2.7 Hybrid Model of Walking 45 -- 3.3 Control Laws for the Single and Double Support Phases 46 -- 3.3.1 Single Support Phase Control Law 46 -- 3.3.2 Double Support Phase Control Law 49 -- 3.4 Hybrid Zero Dynamics (HZD) 54 -- 3.4.1 Analysis of HZD in the Single Support Phase 55 -- 3.4.2 Analysis of HZD in the Double Support Phase 57 -- 3.4.3 Restricted Poincar'e Return Map 58 -- 3.5 Design of an HZD Containing a Prespecified Periodic Solution 60 -- 3.5.1 Design of the Output Functions 60 -- 3.5.2 Design of u1d and u2d 62 -- 3.6 Stabilization of the Periodic Orbit 67 -- 3.7 Motion Planning Algorithm 71 -- 3.7.1 Motion Planning Algorithm for the Single Support Phase 72.
3.7.2 Motion Planning Algorithm for the Double Support Phase 73 -- 3.7.3 Constructing a Period-One Orbit for the Open-Loop Hybrid Model of Walking 76 -- 3.8 Numerical Example for the Motion Planning Algorithm 77 -- 3.9 Simulation Results of the Closed-Loop Hybrid System 82 -- 3.9.1 Effect of Double Support Phase on Angular Momentum Transfer and Stabilization 82 -- 3.9.2 Effect of Event-Based Update Laws on Momentum Transfer and Stabilization 92 -- 4. Asymptotic Stabilization of Periodic Orbits for Planar Monopedal Running 95 -- 4.1 Introduction 95 -- 4.2 Mechanical Model of a Monopedal Runner 97 -- 4.2.1 The Monopedal Runner 97 -- 4.2.2 Dynamics of the Flight Phase 97 -- 4.2.3 Dynamics of the Stance Phase 98 -- 4.2.4 Open-Loop Hybrid Model of Running 99 -- 4.3 Reconfiguration Algorithm for the Flight Phase 99 -- 4.3.1 Determination of the Reachable Set 103 -- 4.4 Control Laws for Stance and Flight Phases 120 -- 4.4.1 Stance Phase Control Law 121 -- 4.4.2 Flight Phase Control Law 122 -- 4.4.3 Event-Based Update Law 124 -- 4.5 Hybrid Zero Dynamics and Stabilization 125 -- 4.6 Numerical Results 127 -- 5. Online Generation of Joint Motions During Flight Phases of Planar Running 137 -- 5.1 Introduction 137 -- 5.2 Mechanical Model of a Planar Open Kinematic Chain 138 -- 5.3 Motion Planning Algorithm to Generate Continuous Joint Motions 140 -- 5.3.1 Determining the Reachable Set from the Origin 143 -- 5.3.2 Motion Planning Algorithm 150 -- 5.4 Motion Planning Algorithm to Generate Continuously Differentiable Joint Motions 152 -- 6. Stabilization of Periodic Orbits for 3D Monopedal Running 159 -- 6.1 Introduction 159 -- 6.2 Open-Loop Hybrid Model of a 3D Running 160 -- 6.2.1 Dynamics of the Flight Phase 162 -- 6.2.2 Dynamics of the Stance Phase 163 -- 6.2.3 Transition Maps 164 -- 6.2.4 Hybrid Model 166 -- 6.3 Design of a Period-One Solution for the Open-Loop Model of Running 167 -- 6.4 Numerical Example 172 -- 6.5 Within-Stride Controllers 175 -- 6.5.1 Stance Phase Control Law 175.
6.5.2 Flight Phase Control Law 178 -- 6.6 Event-Based Update Laws for Hybrid Invariance 181 -- 6.6.1 Takeoff Update Laws 184 -- 6.6.2 Impact Update Laws 185 -- 6.7 Stabilization Problem 186 -- 6.8 Simulation Results 189 -- 7. Stabilization of Periodic Orbits for Walking with Passive Knees 193 -- 7.1 Introduction 193 -- 7.2 Open-Loop Model of Walking 194 -- 7.2.1 Mechanical Model of the Planar Bipedal Robot 194 -- 7.2.2 Dynamics of the Single Support Phase 195 -- 7.2.3 Impact Map 195 -- 7.2.4 Open-Loop Impulsive Model of Walking 196 -- 7.3 Motion Planning Algorithm 197 -- 7.4 Numerical Example 200 -- 7.5 Continuous-Times Controllers 202 -- 7.6 Event-Based Controllers 209 -- 7.6.1 Hybrid Invariance 209 -- 7.6.2 Continuity of the Continuous-Time Controllers During the Within-Stride Transitions 212 -- 7.7 Stabilization Problem 213 -- 7.8 Simulation of the Closed-Loop Hybrid System 217 -- 8. Continuous-Time Update Laws During Continuous Phases of Locomotion 221 -- 8.1 Introduction 221 -- 8.2 Invariance of the Exponential Stability Behavior for a Class of Impulsive Systems 222 -- 8.3 Outline of the Proof of Theorem 8.1 224 -- 8.4 Application to Legged Locomotion 227 -- A. Proofs Associated with Chapter 3 229 -- A.1 Proof of Lemma 3.3 229 -- A.2 Proof of Lemma 3.4 230 -- A.3 Proof of Lemma 3.7 230 -- B. Proofs Associated with Chapter 4 233 -- B.1 Proof of Lemma 4.2 233 -- B.2 Proof of Theorem 4.2 234 -- C. Proofs Associated with Chapter 6 237 -- C.1 Proof of Lemma 6.1 237 -- C.2 Proof of Lemma 6.2 238 -- C.3 Invertibility of the Stance Phase Decoupling Matrix on the Periodic Orbit 240 -- Bibliography 241 -- Index 249.
Record Nr. UNINA-9910139076103321
Hoboken, N.J. : , : Wiley, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hybrid control and motion planning of dynamical legged locomotion / / Nasser Sadati [and three others]
Hybrid control and motion planning of dynamical legged locomotion / / Nasser Sadati [and three others]
Pubbl/distr/stampa Piscataqay, J : , : IEEE Press, , [2012]
Descrizione fisica 1 online resource (286 pages)
Disciplina 629.8/932
629.8932
Altri autori (Persone) SadatiNasser
Collana IEEE press series on systems science and engineering
Soggetto topico Mobile robots
Robots - Motion
Walking
ISBN 1-118-39372-4
1-118-39374-0
1-283-59324-6
9786613905697
1-118-39370-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface ix -- 1. Introduction 1 -- 1.1 Objectives of Legged Locomotion and Challenges in Controlling Dynamic Walking and Running 1 -- 1.2 Literature Overview 4 -- 1.2.1 Tracking of Time Trajectories 4 -- 1.2.2 Poincar'e Return Map and Hybrid Zero Dynamics 5 -- 1.3 The Objective of the Book 7 -- 1.3.1 Hybrid Zero Dynamics in Walking with Double Support Phase 7 -- 1.3.2 Hybrid Zero Dynamics in Running with an Online Motion Planning Algorithm 8 -- 1.3.3 Online Motion Planning Algorithms for Flight Phases of Running 9 -- 1.3.4 Hybrid Zero Dynamics in 3D Running 10 -- 1.3.5 Hybrid Zero Dynamics in Walking with Passive Knees 11 -- 1.3.6 Hybrid Zero Dynamics with Continuous-Time Update Laws 12 -- 2. Preliminaries in Hybrid Systems 13 -- 2.1 Basic Definitions 13 -- 2.2 Poincar'e Return Map for Hybrid Systems 16 -- 2.3 Low-Dimensional Stability Analysis 23 -- 2.4 Stabilization Problem 28 -- 3. Asymptotic Stabilization of Periodic Orbits forWalking with Double Support Phase 35 -- 3.1 Introduction 35 -- 3.2 Mechanical Model of a Biped Walker 37 -- 3.2.1 The Biped Robot 37 -- 3.2.2 Dynamics of the Flight Phase 37 -- 3.2.3 Dynamics of the Single Support Phase 39 -- 3.2.4 Dynamics of the Double Support Phase 40 -- 3.2.5 Impact Model 43 -- 3.2.6 Transition from the Double Support Phase to the Single Support Phase 45 -- 3.2.7 Hybrid Model of Walking 45 -- 3.3 Control Laws for the Single and Double Support Phases 46 -- 3.3.1 Single Support Phase Control Law 46 -- 3.3.2 Double Support Phase Control Law 49 -- 3.4 Hybrid Zero Dynamics (HZD) 54 -- 3.4.1 Analysis of HZD in the Single Support Phase 55 -- 3.4.2 Analysis of HZD in the Double Support Phase 57 -- 3.4.3 Restricted Poincar'e Return Map 58 -- 3.5 Design of an HZD Containing a Prespecified Periodic Solution 60 -- 3.5.1 Design of the Output Functions 60 -- 3.5.2 Design of u1d and u2d 62 -- 3.6 Stabilization of the Periodic Orbit 67 -- 3.7 Motion Planning Algorithm 71 -- 3.7.1 Motion Planning Algorithm for the Single Support Phase 72.
3.7.2 Motion Planning Algorithm for the Double Support Phase 73 -- 3.7.3 Constructing a Period-One Orbit for the Open-Loop Hybrid Model of Walking 76 -- 3.8 Numerical Example for the Motion Planning Algorithm 77 -- 3.9 Simulation Results of the Closed-Loop Hybrid System 82 -- 3.9.1 Effect of Double Support Phase on Angular Momentum Transfer and Stabilization 82 -- 3.9.2 Effect of Event-Based Update Laws on Momentum Transfer and Stabilization 92 -- 4. Asymptotic Stabilization of Periodic Orbits for Planar Monopedal Running 95 -- 4.1 Introduction 95 -- 4.2 Mechanical Model of a Monopedal Runner 97 -- 4.2.1 The Monopedal Runner 97 -- 4.2.2 Dynamics of the Flight Phase 97 -- 4.2.3 Dynamics of the Stance Phase 98 -- 4.2.4 Open-Loop Hybrid Model of Running 99 -- 4.3 Reconfiguration Algorithm for the Flight Phase 99 -- 4.3.1 Determination of the Reachable Set 103 -- 4.4 Control Laws for Stance and Flight Phases 120 -- 4.4.1 Stance Phase Control Law 121 -- 4.4.2 Flight Phase Control Law 122 -- 4.4.3 Event-Based Update Law 124 -- 4.5 Hybrid Zero Dynamics and Stabilization 125 -- 4.6 Numerical Results 127 -- 5. Online Generation of Joint Motions During Flight Phases of Planar Running 137 -- 5.1 Introduction 137 -- 5.2 Mechanical Model of a Planar Open Kinematic Chain 138 -- 5.3 Motion Planning Algorithm to Generate Continuous Joint Motions 140 -- 5.3.1 Determining the Reachable Set from the Origin 143 -- 5.3.2 Motion Planning Algorithm 150 -- 5.4 Motion Planning Algorithm to Generate Continuously Differentiable Joint Motions 152 -- 6. Stabilization of Periodic Orbits for 3D Monopedal Running 159 -- 6.1 Introduction 159 -- 6.2 Open-Loop Hybrid Model of a 3D Running 160 -- 6.2.1 Dynamics of the Flight Phase 162 -- 6.2.2 Dynamics of the Stance Phase 163 -- 6.2.3 Transition Maps 164 -- 6.2.4 Hybrid Model 166 -- 6.3 Design of a Period-One Solution for the Open-Loop Model of Running 167 -- 6.4 Numerical Example 172 -- 6.5 Within-Stride Controllers 175 -- 6.5.1 Stance Phase Control Law 175.
6.5.2 Flight Phase Control Law 178 -- 6.6 Event-Based Update Laws for Hybrid Invariance 181 -- 6.6.1 Takeoff Update Laws 184 -- 6.6.2 Impact Update Laws 185 -- 6.7 Stabilization Problem 186 -- 6.8 Simulation Results 189 -- 7. Stabilization of Periodic Orbits for Walking with Passive Knees 193 -- 7.1 Introduction 193 -- 7.2 Open-Loop Model of Walking 194 -- 7.2.1 Mechanical Model of the Planar Bipedal Robot 194 -- 7.2.2 Dynamics of the Single Support Phase 195 -- 7.2.3 Impact Map 195 -- 7.2.4 Open-Loop Impulsive Model of Walking 196 -- 7.3 Motion Planning Algorithm 197 -- 7.4 Numerical Example 200 -- 7.5 Continuous-Times Controllers 202 -- 7.6 Event-Based Controllers 209 -- 7.6.1 Hybrid Invariance 209 -- 7.6.2 Continuity of the Continuous-Time Controllers During the Within-Stride Transitions 212 -- 7.7 Stabilization Problem 213 -- 7.8 Simulation of the Closed-Loop Hybrid System 217 -- 8. Continuous-Time Update Laws During Continuous Phases of Locomotion 221 -- 8.1 Introduction 221 -- 8.2 Invariance of the Exponential Stability Behavior for a Class of Impulsive Systems 222 -- 8.3 Outline of the Proof of Theorem 8.1 224 -- 8.4 Application to Legged Locomotion 227 -- A. Proofs Associated with Chapter 3 229 -- A.1 Proof of Lemma 3.3 229 -- A.2 Proof of Lemma 3.4 230 -- A.3 Proof of Lemma 3.7 230 -- B. Proofs Associated with Chapter 4 233 -- B.1 Proof of Lemma 4.2 233 -- B.2 Proof of Theorem 4.2 234 -- C. Proofs Associated with Chapter 6 237 -- C.1 Proof of Lemma 6.1 237 -- C.2 Proof of Lemma 6.2 238 -- C.3 Invertibility of the Stance Phase Decoupling Matrix on the Periodic Orbit 240 -- Bibliography 241 -- Index 249.
Record Nr. UNINA-9910830291003321
Piscataqay, J : , : IEEE Press, , [2012]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hybrid control and motion planning of dynamical legged locomotion / / Nasser Sadati ... [et al.]
Hybrid control and motion planning of dynamical legged locomotion / / Nasser Sadati ... [et al.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2012
Descrizione fisica 1 online resource (286 pages)
Disciplina 629.8/932
Altri autori (Persone) SadatiNasser
Collana IEEE press series on systems science and engineering
Soggetto topico Mobile robots
Robots - Motion
Walking
ISBN 1-118-39372-4
1-118-39374-0
1-283-59324-6
9786613905697
1-118-39370-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface ix -- 1. Introduction 1 -- 1.1 Objectives of Legged Locomotion and Challenges in Controlling Dynamic Walking and Running 1 -- 1.2 Literature Overview 4 -- 1.2.1 Tracking of Time Trajectories 4 -- 1.2.2 Poincar'e Return Map and Hybrid Zero Dynamics 5 -- 1.3 The Objective of the Book 7 -- 1.3.1 Hybrid Zero Dynamics in Walking with Double Support Phase 7 -- 1.3.2 Hybrid Zero Dynamics in Running with an Online Motion Planning Algorithm 8 -- 1.3.3 Online Motion Planning Algorithms for Flight Phases of Running 9 -- 1.3.4 Hybrid Zero Dynamics in 3D Running 10 -- 1.3.5 Hybrid Zero Dynamics in Walking with Passive Knees 11 -- 1.3.6 Hybrid Zero Dynamics with Continuous-Time Update Laws 12 -- 2. Preliminaries in Hybrid Systems 13 -- 2.1 Basic Definitions 13 -- 2.2 Poincar'e Return Map for Hybrid Systems 16 -- 2.3 Low-Dimensional Stability Analysis 23 -- 2.4 Stabilization Problem 28 -- 3. Asymptotic Stabilization of Periodic Orbits forWalking with Double Support Phase 35 -- 3.1 Introduction 35 -- 3.2 Mechanical Model of a Biped Walker 37 -- 3.2.1 The Biped Robot 37 -- 3.2.2 Dynamics of the Flight Phase 37 -- 3.2.3 Dynamics of the Single Support Phase 39 -- 3.2.4 Dynamics of the Double Support Phase 40 -- 3.2.5 Impact Model 43 -- 3.2.6 Transition from the Double Support Phase to the Single Support Phase 45 -- 3.2.7 Hybrid Model of Walking 45 -- 3.3 Control Laws for the Single and Double Support Phases 46 -- 3.3.1 Single Support Phase Control Law 46 -- 3.3.2 Double Support Phase Control Law 49 -- 3.4 Hybrid Zero Dynamics (HZD) 54 -- 3.4.1 Analysis of HZD in the Single Support Phase 55 -- 3.4.2 Analysis of HZD in the Double Support Phase 57 -- 3.4.3 Restricted Poincar'e Return Map 58 -- 3.5 Design of an HZD Containing a Prespecified Periodic Solution 60 -- 3.5.1 Design of the Output Functions 60 -- 3.5.2 Design of u1d and u2d 62 -- 3.6 Stabilization of the Periodic Orbit 67 -- 3.7 Motion Planning Algorithm 71 -- 3.7.1 Motion Planning Algorithm for the Single Support Phase 72.
3.7.2 Motion Planning Algorithm for the Double Support Phase 73 -- 3.7.3 Constructing a Period-One Orbit for the Open-Loop Hybrid Model of Walking 76 -- 3.8 Numerical Example for the Motion Planning Algorithm 77 -- 3.9 Simulation Results of the Closed-Loop Hybrid System 82 -- 3.9.1 Effect of Double Support Phase on Angular Momentum Transfer and Stabilization 82 -- 3.9.2 Effect of Event-Based Update Laws on Momentum Transfer and Stabilization 92 -- 4. Asymptotic Stabilization of Periodic Orbits for Planar Monopedal Running 95 -- 4.1 Introduction 95 -- 4.2 Mechanical Model of a Monopedal Runner 97 -- 4.2.1 The Monopedal Runner 97 -- 4.2.2 Dynamics of the Flight Phase 97 -- 4.2.3 Dynamics of the Stance Phase 98 -- 4.2.4 Open-Loop Hybrid Model of Running 99 -- 4.3 Reconfiguration Algorithm for the Flight Phase 99 -- 4.3.1 Determination of the Reachable Set 103 -- 4.4 Control Laws for Stance and Flight Phases 120 -- 4.4.1 Stance Phase Control Law 121 -- 4.4.2 Flight Phase Control Law 122 -- 4.4.3 Event-Based Update Law 124 -- 4.5 Hybrid Zero Dynamics and Stabilization 125 -- 4.6 Numerical Results 127 -- 5. Online Generation of Joint Motions During Flight Phases of Planar Running 137 -- 5.1 Introduction 137 -- 5.2 Mechanical Model of a Planar Open Kinematic Chain 138 -- 5.3 Motion Planning Algorithm to Generate Continuous Joint Motions 140 -- 5.3.1 Determining the Reachable Set from the Origin 143 -- 5.3.2 Motion Planning Algorithm 150 -- 5.4 Motion Planning Algorithm to Generate Continuously Differentiable Joint Motions 152 -- 6. Stabilization of Periodic Orbits for 3D Monopedal Running 159 -- 6.1 Introduction 159 -- 6.2 Open-Loop Hybrid Model of a 3D Running 160 -- 6.2.1 Dynamics of the Flight Phase 162 -- 6.2.2 Dynamics of the Stance Phase 163 -- 6.2.3 Transition Maps 164 -- 6.2.4 Hybrid Model 166 -- 6.3 Design of a Period-One Solution for the Open-Loop Model of Running 167 -- 6.4 Numerical Example 172 -- 6.5 Within-Stride Controllers 175 -- 6.5.1 Stance Phase Control Law 175.
6.5.2 Flight Phase Control Law 178 -- 6.6 Event-Based Update Laws for Hybrid Invariance 181 -- 6.6.1 Takeoff Update Laws 184 -- 6.6.2 Impact Update Laws 185 -- 6.7 Stabilization Problem 186 -- 6.8 Simulation Results 189 -- 7. Stabilization of Periodic Orbits for Walking with Passive Knees 193 -- 7.1 Introduction 193 -- 7.2 Open-Loop Model of Walking 194 -- 7.2.1 Mechanical Model of the Planar Bipedal Robot 194 -- 7.2.2 Dynamics of the Single Support Phase 195 -- 7.2.3 Impact Map 195 -- 7.2.4 Open-Loop Impulsive Model of Walking 196 -- 7.3 Motion Planning Algorithm 197 -- 7.4 Numerical Example 200 -- 7.5 Continuous-Times Controllers 202 -- 7.6 Event-Based Controllers 209 -- 7.6.1 Hybrid Invariance 209 -- 7.6.2 Continuity of the Continuous-Time Controllers During the Within-Stride Transitions 212 -- 7.7 Stabilization Problem 213 -- 7.8 Simulation of the Closed-Loop Hybrid System 217 -- 8. Continuous-Time Update Laws During Continuous Phases of Locomotion 221 -- 8.1 Introduction 221 -- 8.2 Invariance of the Exponential Stability Behavior for a Class of Impulsive Systems 222 -- 8.3 Outline of the Proof of Theorem 8.1 224 -- 8.4 Application to Legged Locomotion 227 -- A. Proofs Associated with Chapter 3 229 -- A.1 Proof of Lemma 3.3 229 -- A.2 Proof of Lemma 3.4 230 -- A.3 Proof of Lemma 3.7 230 -- B. Proofs Associated with Chapter 4 233 -- B.1 Proof of Lemma 4.2 233 -- B.2 Proof of Theorem 4.2 234 -- C. Proofs Associated with Chapter 6 237 -- C.1 Proof of Lemma 6.1 237 -- C.2 Proof of Lemma 6.2 238 -- C.3 Invertibility of the Stance Phase Decoupling Matrix on the Periodic Orbit 240 -- Bibliography 241 -- Index 249.
Record Nr. UNINA-9910876752503321
Hoboken, N.J., : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui