WiFi, WiMAX and LTE multi-hop mesh networks : basic communication protocols and application areas / / .Hung-Yu Wei (National Taiwan University, Taiwan), Jarogniew Rykowski (Poznaân University of Economics, Poland), Sudhir Dixit (Hewlett-Packard Laboratories, India) |
Autore | Wei Hung-Yu |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2013] |
Descrizione fisica | 1 online resource (282 p.) |
Disciplina | 004.6/2 |
Altri autori (Persone) |
RykowskiJaroqniew
DixitSudhir |
Collana | Information and communication technology series |
Soggetto topico |
Ad hoc networks (Computer networks)
Wireless LANs |
ISBN |
1-118-57102-9
1-118-57111-8 1-299-31488-0 1-118-57106-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Foreword xi -- Preface xiii -- About the Authors xvii -- List of Figures xix -- List of Tables xxv -- 1 Introduction 1 -- 2 Architectural Requirements for Multi-hop and Ad-Hoc Networking 9 -- 2.1. When and Where Do We Need Ad-Hoc Networking? 9 -- 2.2. When Do We Need Multi-hop? How Many Hops Are Sufficient/Necessary? 12 -- 2.3. Anonymity versus Authorization and Authentication 13 -- 2.4. Security and Privacy in Ad-Hoc Networks 17 -- 2.5. Security and Privacy in Multi-hop Networks 18 -- 2.6. Filtering the Traffic in Ad-Hoc Networking and Multi-hop Relaying 20 -- 2.7. QoS 23 -- 2.8. Addressability 24 -- 2.9. Searchability 28 -- 2.10. Ad-Hoc Contexts for Next-Generation Searching 29 -- 2.11. Personalization Aspects in Ad-Hoc Information Access 31 -- 2.12. Multi-hop Networking: Technical Aspects 32 -- 2.13. Summary 34 -- 2.13.1. Do We Really Need Ad-Hoc and Multi-hop Networking? If So, When and Where? 35 -- 2.13.2. When and Where Do We Need Ad-Hoc Networking? 35 -- 2.13.3. How Do We Effectively Combine Anonymity/Privacy with Safety/Security? 36 -- 2.13.4. How Do We Personalize Network Access, Including User-Oriented Information Filtering? 37 -- 2.13.5. How Do We Access Places/Devices/Information in a Highly Dynamic Environment of an Ad-Hoc and Multi-hop Network Affecting Addressability, Searchability, and Accessibility of Data? 37 -- 2.13.6. How Do We Support Frequently Dis- and Reconnected Users, Including Efficient Propagation of Important Information to Newcomers? 38 -- 2.13.7. How Many Hops Are Allowed/Effective for a Typical Multi-hop Information Exchange? Is Relaying Affected with the Security/Privacy Issues? 38 -- 3 Application Areas for Multi-hop and Ad-Hoc Networking 42 -- 3.1. Telematics 42 -- 3.1.1. Introduction to Telematics Applications 42 -- 3.1.2. Ad-Hoc Enhanced Navigation Support 44 -- 3.1.3. Traffic Lights Assistance 52 -- 3.1.4. CB-Net Application 56 -- 3.1.5. City-Transportation Integrated Support 62 -- 3.2. E-Ticket Applications 67 -- 3.3. Telemedicine 69.
3.4. Environment Protection 71 -- 3.5. Public Safety 73 -- 3.5.1. Ad-Hoc Monitoring for Public Safety Applications 74 -- 3.5.2. Broadcasting Public Safety Information 81 -- 3.6. Groupware 84 -- 3.7. Personal, Targeted, Contextual Marketing and Shopping Guidance 85 -- 3.8. Intelligent Building 87 -- 3.8.1. “Intelligent Hospital” Idea 90 -- 3.8.2. “Interactive Museum” Idea 92 -- 3.8.3. Intelligent Ad-Hoc Cooperation at a Workplace 93 -- 3.9. Business Aspects of Multi-hop and Ad-Hoc Networking 94 -- 3.9.1. Monetary Unit for Ad-Hoc and Multi-hop Services 94 -- 3.9.2. Which Ad-Hoc and Multi-hop Functionality Should Be Paid For? 96 -- 3.9.3. Quality-of-Service and Trustability 97 -- 3.9.4. Pay-per-Access Mode and Subscriptions 98 -- 3.9.5. Legal Regulations 100 -- 3.9.6. Ad-Hoc and Multi-hop Networking versus Commercial Networks and Network Providers 100 -- 3.10. Summary 102 -- 4 Mesh Networking Using IEEE 802.11 Wireless Technologies 109 -- 4.1. IEEE 802.11 110 -- 4.1.1. WiFi and IEEE 802.11 Wireless LAN 111 -- 4.1.2. IEEE 802.11 Mesh Network Architectures 113 -- 4.2. IEEE 802.11s: Standard for WLAN Mesh Networking 116 -- 4.2.1. Additional Functions in 802.11s 120 -- 4.2.2. WiFi Certification and Deployments of IEEE 802.11s 120 -- 4.3. Summary 121 -- 5 Wireless Relay Networking Using IEEE 802.16 WiMAX Technologies 122 -- 5.1. IEEE 802.16 Overview and Architecture 122 -- 5.2. IEEE 802.16j Relay System Overview 123 -- 5.2.1. Nontransparent Relay versus Transparent Relay 124 -- 5.2.2. Connection Types 125 -- 5.2.3. MAC PDU Transmission Mode 126 -- 5.2.4. Relay MAC PDU 128 -- 5.2.5. Subheaders in Relay MAC PDU 131 -- 5.3. IEEE 802.16j Frame Structure 132 -- 5.3.1. Frame Structure in Nontransparent Mode 135 -- 5.3.2. Frame Structure in Transparent Mode 137 -- 5.4. Path Management in 802.16j Relay 139 -- 5.4.1. Explicit Path Management 140 -- 5.4.2. Implicit Path Management 142 -- 5.4.3. Contiguous Integer Block CID Assignment for Implicit Path Management 143 -- 5.4.4. Bit Partition CID Assignment for Implicit Path Management 144. 5.4.5. Path Selection and Metrics 146 -- 5.5. Radio Resource Management 147 -- 5.5.1. RRM with Distributed Scheduling 147 -- 5.5.2. Bandwidth Request Mechanism in WiMAX 147 -- 5.5.3. Downlink Flow Control 154 -- 5.5.4. RRM with Centralized Scheduling 156 -- 5.5.5. SS-Initiated Bandwidth Request in Centralized Scheduling 159 -- 5.6. Interference Management 163 -- 5.6.1. Interference Measurement 163 -- 5.6.2. RS Neighborhood Discovery and Measurements 167 -- 5.6.3. Relay Amble (R-Amble) Transmission 168 -- 5.7. Initialization and Network Entry 170 -- 5.7.1. Network Entry Overview 170 -- 5.7.2. Network Entry for Relay Station 172 -- 5.7.3. Fast Reentry 176 -- 5.7.4. Network Entry for Subscriber Station (Through RS) 177 -- 5.8. Mobility Management and Handoff 177 -- 5.8.1. Design Issues: Mobility Management in Multi-hop Relay Network 177 -- 5.8.2. Overview of Mobile Station Handoff Protocol Design in 802.16j 179 -- 5.8.3. Neighborhood Network Topology Advertisement 180 -- 5.8.4. Mobile Node Scanning 181 -- 5.8.5. Association 183 -- 5.8.6. Handoff Execution 185 -- 5.8.7. Handoff Optimization with Context Transfer 186 -- 5.8.8. Mobile Relay Station Handoff 187 -- 5.9. Power Management 189 -- 5.9.1. Sleep Mode 191 -- 5.9.2. Idle Mode 193 -- 5.10. HARQ and Reliable Transmission 195 -- 5.10.1. Design Issues: HARQ in Multi-hop Relay Network 195 -- 5.10.2. Overview of HARQ Design in 802.16j 196 -- 5.10.3. HARQ in Centralized Scheduling 197 -- 5.10.4. Downlink HARQ in Nontransparent Mode 198 -- 5.10.5. Downlink HARQ in Transparent Mode: Hop-by-Hop HARQ Operation 202 -- 5.10.6. Downlink HARQ in Transparent Mode: RS-assisted HARQ 204 -- 5.10.7. Uplink HARQ in Nontransparent Mode 207 -- 5.10.8. Uplink HARQ in Transparent Mode 209 -- 5.10.9. HARQ in Distributed Scheduling 211 -- 5.11. Multicast, Broadcast, and RS Grouping 211 -- 5.11.1. Multicast and Broadcast 211 -- 5.12. RS Grouping 215 -- 5.13. Summary 220 -- 6 Wireless Relay Networking with Long Term Evolution (LTE) 221 -- 6.1. Overview of the LTE Relay System 221. 6.1.1. LTE Relay Deployment Scenario 223 -- 6.1.2. Overview of Resource Partitioning in In-Band Relay 224 -- 6.2. Physical Layer for LTE Relay 226 -- 6.2.1. Physical Layer Channels 226 -- 6.2.2. Frame Structure in Physical Layer Channels 227 -- 6.3. LTE Relay System Architecture 228 -- 6.3.1. Protocol Stacks for Radio Interface 228 -- 6.3.2. S1 Interface 231 -- 6.3.3. RN Initialization and Startup Procedure 234 -- 6.4. LTE Relay System Design Issues 237 -- 6.4.1. Overview of Architecture and Design Issues 237 -- 6.4.2. Design Issue: Downlink Flow Control 238 -- 6.4.3. Design Issue: End-to-End QoS Confi guration 238 -- 6.4.4. Design Issue: Un Interface Confi guration 239 -- 6.4.5. Design Issue: Connection Establishment 240 -- 6.4.6. Design Issue: Radio Link Failure and Connection Reestablishment 240 -- 6.4.7. Design Issue: Other Design Options 241 -- 6.5. Future Development in LTE Relay 242 -- 6.5.1. Mobile Relay 242 -- 6.5.2. Advanced Link Transmission 242 -- 6.5.3. Other Deployment Scenarios and Architecture 243 -- 6.6. Summary 244 -- 7 Summary 245 -- References 247 -- Index 251. |
Record Nr. | UNINA-9910139058903321 |
Wei Hung-Yu | ||
Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2013] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
WiFi, WiMAX and LTE multi-hop mesh networks : basic communication protocols and application areas / / .Hung-Yu Wei (National Taiwan University, Taiwan), Jarogniew Rykowski (Poznaân University of Economics, Poland), Sudhir Dixit (Hewlett-Packard Laboratories, India) |
Autore | Wei Hung-Yu |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2013] |
Descrizione fisica | 1 online resource (282 p.) |
Disciplina | 004.6/2 |
Altri autori (Persone) |
RykowskiJaroqniew
DixitSudhir |
Collana | Information and communication technology series |
Soggetto topico |
Ad hoc networks (Computer networks)
Wireless LANs |
ISBN |
1-118-57102-9
1-118-57111-8 1-299-31488-0 1-118-57106-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Foreword xi -- Preface xiii -- About the Authors xvii -- List of Figures xix -- List of Tables xxv -- 1 Introduction 1 -- 2 Architectural Requirements for Multi-hop and Ad-Hoc Networking 9 -- 2.1. When and Where Do We Need Ad-Hoc Networking? 9 -- 2.2. When Do We Need Multi-hop? How Many Hops Are Sufficient/Necessary? 12 -- 2.3. Anonymity versus Authorization and Authentication 13 -- 2.4. Security and Privacy in Ad-Hoc Networks 17 -- 2.5. Security and Privacy in Multi-hop Networks 18 -- 2.6. Filtering the Traffic in Ad-Hoc Networking and Multi-hop Relaying 20 -- 2.7. QoS 23 -- 2.8. Addressability 24 -- 2.9. Searchability 28 -- 2.10. Ad-Hoc Contexts for Next-Generation Searching 29 -- 2.11. Personalization Aspects in Ad-Hoc Information Access 31 -- 2.12. Multi-hop Networking: Technical Aspects 32 -- 2.13. Summary 34 -- 2.13.1. Do We Really Need Ad-Hoc and Multi-hop Networking? If So, When and Where? 35 -- 2.13.2. When and Where Do We Need Ad-Hoc Networking? 35 -- 2.13.3. How Do We Effectively Combine Anonymity/Privacy with Safety/Security? 36 -- 2.13.4. How Do We Personalize Network Access, Including User-Oriented Information Filtering? 37 -- 2.13.5. How Do We Access Places/Devices/Information in a Highly Dynamic Environment of an Ad-Hoc and Multi-hop Network Affecting Addressability, Searchability, and Accessibility of Data? 37 -- 2.13.6. How Do We Support Frequently Dis- and Reconnected Users, Including Efficient Propagation of Important Information to Newcomers? 38 -- 2.13.7. How Many Hops Are Allowed/Effective for a Typical Multi-hop Information Exchange? Is Relaying Affected with the Security/Privacy Issues? 38 -- 3 Application Areas for Multi-hop and Ad-Hoc Networking 42 -- 3.1. Telematics 42 -- 3.1.1. Introduction to Telematics Applications 42 -- 3.1.2. Ad-Hoc Enhanced Navigation Support 44 -- 3.1.3. Traffic Lights Assistance 52 -- 3.1.4. CB-Net Application 56 -- 3.1.5. City-Transportation Integrated Support 62 -- 3.2. E-Ticket Applications 67 -- 3.3. Telemedicine 69.
3.4. Environment Protection 71 -- 3.5. Public Safety 73 -- 3.5.1. Ad-Hoc Monitoring for Public Safety Applications 74 -- 3.5.2. Broadcasting Public Safety Information 81 -- 3.6. Groupware 84 -- 3.7. Personal, Targeted, Contextual Marketing and Shopping Guidance 85 -- 3.8. Intelligent Building 87 -- 3.8.1. “Intelligent Hospital” Idea 90 -- 3.8.2. “Interactive Museum” Idea 92 -- 3.8.3. Intelligent Ad-Hoc Cooperation at a Workplace 93 -- 3.9. Business Aspects of Multi-hop and Ad-Hoc Networking 94 -- 3.9.1. Monetary Unit for Ad-Hoc and Multi-hop Services 94 -- 3.9.2. Which Ad-Hoc and Multi-hop Functionality Should Be Paid For? 96 -- 3.9.3. Quality-of-Service and Trustability 97 -- 3.9.4. Pay-per-Access Mode and Subscriptions 98 -- 3.9.5. Legal Regulations 100 -- 3.9.6. Ad-Hoc and Multi-hop Networking versus Commercial Networks and Network Providers 100 -- 3.10. Summary 102 -- 4 Mesh Networking Using IEEE 802.11 Wireless Technologies 109 -- 4.1. IEEE 802.11 110 -- 4.1.1. WiFi and IEEE 802.11 Wireless LAN 111 -- 4.1.2. IEEE 802.11 Mesh Network Architectures 113 -- 4.2. IEEE 802.11s: Standard for WLAN Mesh Networking 116 -- 4.2.1. Additional Functions in 802.11s 120 -- 4.2.2. WiFi Certification and Deployments of IEEE 802.11s 120 -- 4.3. Summary 121 -- 5 Wireless Relay Networking Using IEEE 802.16 WiMAX Technologies 122 -- 5.1. IEEE 802.16 Overview and Architecture 122 -- 5.2. IEEE 802.16j Relay System Overview 123 -- 5.2.1. Nontransparent Relay versus Transparent Relay 124 -- 5.2.2. Connection Types 125 -- 5.2.3. MAC PDU Transmission Mode 126 -- 5.2.4. Relay MAC PDU 128 -- 5.2.5. Subheaders in Relay MAC PDU 131 -- 5.3. IEEE 802.16j Frame Structure 132 -- 5.3.1. Frame Structure in Nontransparent Mode 135 -- 5.3.2. Frame Structure in Transparent Mode 137 -- 5.4. Path Management in 802.16j Relay 139 -- 5.4.1. Explicit Path Management 140 -- 5.4.2. Implicit Path Management 142 -- 5.4.3. Contiguous Integer Block CID Assignment for Implicit Path Management 143 -- 5.4.4. Bit Partition CID Assignment for Implicit Path Management 144. 5.4.5. Path Selection and Metrics 146 -- 5.5. Radio Resource Management 147 -- 5.5.1. RRM with Distributed Scheduling 147 -- 5.5.2. Bandwidth Request Mechanism in WiMAX 147 -- 5.5.3. Downlink Flow Control 154 -- 5.5.4. RRM with Centralized Scheduling 156 -- 5.5.5. SS-Initiated Bandwidth Request in Centralized Scheduling 159 -- 5.6. Interference Management 163 -- 5.6.1. Interference Measurement 163 -- 5.6.2. RS Neighborhood Discovery and Measurements 167 -- 5.6.3. Relay Amble (R-Amble) Transmission 168 -- 5.7. Initialization and Network Entry 170 -- 5.7.1. Network Entry Overview 170 -- 5.7.2. Network Entry for Relay Station 172 -- 5.7.3. Fast Reentry 176 -- 5.7.4. Network Entry for Subscriber Station (Through RS) 177 -- 5.8. Mobility Management and Handoff 177 -- 5.8.1. Design Issues: Mobility Management in Multi-hop Relay Network 177 -- 5.8.2. Overview of Mobile Station Handoff Protocol Design in 802.16j 179 -- 5.8.3. Neighborhood Network Topology Advertisement 180 -- 5.8.4. Mobile Node Scanning 181 -- 5.8.5. Association 183 -- 5.8.6. Handoff Execution 185 -- 5.8.7. Handoff Optimization with Context Transfer 186 -- 5.8.8. Mobile Relay Station Handoff 187 -- 5.9. Power Management 189 -- 5.9.1. Sleep Mode 191 -- 5.9.2. Idle Mode 193 -- 5.10. HARQ and Reliable Transmission 195 -- 5.10.1. Design Issues: HARQ in Multi-hop Relay Network 195 -- 5.10.2. Overview of HARQ Design in 802.16j 196 -- 5.10.3. HARQ in Centralized Scheduling 197 -- 5.10.4. Downlink HARQ in Nontransparent Mode 198 -- 5.10.5. Downlink HARQ in Transparent Mode: Hop-by-Hop HARQ Operation 202 -- 5.10.6. Downlink HARQ in Transparent Mode: RS-assisted HARQ 204 -- 5.10.7. Uplink HARQ in Nontransparent Mode 207 -- 5.10.8. Uplink HARQ in Transparent Mode 209 -- 5.10.9. HARQ in Distributed Scheduling 211 -- 5.11. Multicast, Broadcast, and RS Grouping 211 -- 5.11.1. Multicast and Broadcast 211 -- 5.12. RS Grouping 215 -- 5.13. Summary 220 -- 6 Wireless Relay Networking with Long Term Evolution (LTE) 221 -- 6.1. Overview of the LTE Relay System 221. 6.1.1. LTE Relay Deployment Scenario 223 -- 6.1.2. Overview of Resource Partitioning in In-Band Relay 224 -- 6.2. Physical Layer for LTE Relay 226 -- 6.2.1. Physical Layer Channels 226 -- 6.2.2. Frame Structure in Physical Layer Channels 227 -- 6.3. LTE Relay System Architecture 228 -- 6.3.1. Protocol Stacks for Radio Interface 228 -- 6.3.2. S1 Interface 231 -- 6.3.3. RN Initialization and Startup Procedure 234 -- 6.4. LTE Relay System Design Issues 237 -- 6.4.1. Overview of Architecture and Design Issues 237 -- 6.4.2. Design Issue: Downlink Flow Control 238 -- 6.4.3. Design Issue: End-to-End QoS Confi guration 238 -- 6.4.4. Design Issue: Un Interface Confi guration 239 -- 6.4.5. Design Issue: Connection Establishment 240 -- 6.4.6. Design Issue: Radio Link Failure and Connection Reestablishment 240 -- 6.4.7. Design Issue: Other Design Options 241 -- 6.5. Future Development in LTE Relay 242 -- 6.5.1. Mobile Relay 242 -- 6.5.2. Advanced Link Transmission 242 -- 6.5.3. Other Deployment Scenarios and Architecture 243 -- 6.6. Summary 244 -- 7 Summary 245 -- References 247 -- Index 251. |
Record Nr. | UNINA-9910814273503321 |
Wei Hung-Yu | ||
Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2013] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|